File size: 29,404 Bytes
38f979d
2b5132f
8cbf79a
 
92a2cc5
38f979d
f2eec95
8f75d16
f2eec95
72f2a80
ec08d04
92a2cc5
e3c5c63
0dbc58f
 
98c04d6
8038dda
8cbf79a
 
 
8038dda
 
0dbc58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d794a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad5dd3
 
 
e3c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3da41
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea80b0
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
8cbf79a
 
 
 
 
 
 
 
 
 
 
deebd1e
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
f2eec95
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
 
 
 
bfa97dc
 
ec08d04
bfa97dc
 
 
ec08d04
bfa97dc
 
 
 
 
ec08d04
 
bfa97dc
 
 
ec08d04
bfa97dc
 
cf159b9
 
 
 
 
 
 
 
 
bfa97dc
cf159b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
92a2cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
92a2cc5
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
8cbf79a
e39c5f4
8cbf79a
 
 
e39c5f4
8cbf79a
 
 
f2eec95
8cbf79a
 
 
 
 
 
 
e39c5f4
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a61687
8cbf79a
 
e39c5f4
8cbf79a
5a61687
8cbf79a
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
e95128d
8cbf79a
 
 
 
 
 
 
 
e95128d
8cbf79a
 
 
 
 
57e492d
8cbf79a
72f2a80
deebd1e
ec08d04
 
 
 
cf159b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from operator import itemgetter

# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option", 
                                 ["Select an option", "Basic: Properties", 
                                  "Basic: Read and write graphs", "Basic: Simple graph", 
                                  "Basic: Simple graph Directed", "Drawing: Custom Node Position",
                                  "Drawing: Cluster Layout", "Drawing: Degree Analysis",
                                  "Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids",
                                  "Drawing: House With Colors", "Drawing: Labels And Colors",
                                  "Drawing: Plotting MultiDiGraph Edges and Labels"])

# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization"):
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Function to display Drawing: Plotting MultiDiGraph Edges and Labels
def draw_labeled_multigraph(G, attr_name, ax=None):
    """
    Length of connectionstyle must be at least that of a maximum number of edges
    between pair of nodes. This number is maximum one-sided connections
    for directed graph and maximum total connections for undirected graph.
    """
    # Works with arc3 and angle3 connectionstyles
    connectionstyle = [f"arc3,rad={r}" for r in it.accumulate([0.15] * 4)]
    pos = nx.shell_layout(G)
    nx.draw_networkx_nodes(G, pos, ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=20, ax=ax)
    nx.draw_networkx_edges(
        G, pos, edge_color="grey", connectionstyle=connectionstyle, ax=ax
    )

    labels = {
        tuple(edge): f"{attr_name}={attrs[attr_name]}"
        for *edge, attrs in G.edges(keys=True, data=True)
    }
    nx.draw_networkx_edge_labels(
        G,
        pos,
        labels,
        connectionstyle=connectionstyle,
        label_pos=0.3,
        font_color="blue",
        bbox={"alpha": 0},
        ax=ax,
    )

# Function to display Drawing: Plotting MultiDiGraph Edges and Labels
def display_multidigraph_edges_labels():
    st.title("Drawing: Plotting MultiDiGraph Edges and Labels")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate a multi directed graph as an example
        nodes = "ABC"
        prod = list(it.product(nodes, repeat=2))
        pair_dict = {f"Product x {i}": prod * i for i in range(1, 5)}

        fig, axes = plt.subplots(2, 2)
        for (name, pairs), ax in zip(pair_dict.items(), np.ravel(axes)):
            G = nx.MultiDiGraph()
            for i, (u, v) in enumerate(pairs):
                G.add_edge(u, v, w=round(i / 3, 2))
            draw_labeled_multigraph(G, "w", ax)
            ax.set_title(name)
        fig.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        # Let the user input the nodes and edges of the graph
        st.write("Enter the nodes and edges to create your own labeled MultiDiGraph.")

        nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d")
        node_labels = nodes.split(',')

        edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d")
        edge_list = [tuple(edge.split('-')) for edge in edges.split(',')]

        # Generate graph based on user input
        G_custom = nx.MultiDiGraph()
        for i, (u, v) in enumerate(edge_list):
            G_custom.add_edge(u, v, w=round(i / 3, 2))

        # Draw the graph
        fig, ax = plt.subplots()
        draw_labeled_multigraph(G_custom, "w", ax)
        st.pyplot(plt)

# Display Drawing: Plotting MultiDiGraph Edges and Labels if selected
if sidebar_option == "Drawing: Plotting MultiDiGraph Edges and Labels":
    display_multidigraph_edges_labels()

# Function to display Drawing: Labels And Colors
def display_labels_and_colors():
    st.title("Drawing: Labels And Colors")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create a cubical graph
        G = nx.cubical_graph()
        pos = nx.spring_layout(G, seed=3113794652)  # positions for all nodes

        # Draw nodes with different colors
        options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9}
        nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options)
        nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options)

        # Draw edges
        nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
        nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
            width=8,
            alpha=0.5,
            edge_color="tab:red",
        )
        nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
            width=8,
            alpha=0.5,
            edge_color="tab:blue",
        )

        # Add labels for nodes
        labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"}
        nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke")

        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # Let the user input the nodes and edges of the graph
        st.write("Enter the nodes and edges to create your own labeled graph.")

        nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d")
        node_labels = nodes.split(',')

        edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d")
        edge_list = [tuple(edge.split('-')) for edge in edges.split(',')]

        # Generate graph based on user input
        G_custom = nx.Graph()
        G_custom.add_nodes_from(node_labels)
        G_custom.add_edges_from(edge_list)

        # Let user choose colors for nodes and edges
        node_color = st.color_picker("Pick a color for nodes:", "#FF6347")
        edge_color = st.color_picker("Pick a color for edges:", "#4682B4")
        
        # Generate layout for the nodes
        pos_custom = nx.spring_layout(G_custom)

        # Draw the graph
        nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9)
        nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7)
        
        # Create custom labels
        custom_labels = {node: f"${node}$" for node in node_labels}
        nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke")

        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

# Display Drawing: Labels And Colors if selected
if sidebar_option == "Drawing: Labels And Colors":
    display_labels_and_colors()

# Function to display Drawing: House With Colors
def display_house_with_colors():
    st.title("Drawing: House With Colors")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create the house graph and explicitly set positions
        G = nx.house_graph()
        pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}

        # Plot nodes with different properties for the "wall" and "roof" nodes
        nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue")
        nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange")
        nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
        
        # Customize axes
        ax = plt.gca()
        ax.margins(0.11)
        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # Allow the user to specify node positions and colors
        st.write("Specify positions for the house graph nodes.")

        positions = {}
        for i in range(5):
            x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
            y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
            
            positions[i] = (x, y)

        # Allow the user to specify colors for wall and roof nodes
        wall_color = st.color_picker("Wall color:", "#0000FF")
        roof_color = st.color_picker("Roof color:", "#FFA500")

        if st.button("Generate"):
            # Create the house graph with the specified positions
            G_custom = nx.house_graph()

            # Plot nodes with user-defined properties for wall and roof nodes
            nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color)
            nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color)
            nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6)

            # Customize axes
            ax = plt.gca()
            ax.margins(0.11)
            plt.tight_layout()
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: House With Colors if selected
if sidebar_option == "Drawing: House With Colors":
    display_house_with_colors()

# Function to display Four Grids visualization for Drawing: Four Grids
def display_four_grids():
    st.title("Drawing: Four Grids")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate a 4x4 grid graph
        G = nx.grid_2d_graph(4, 4)  # 4x4 grid
        pos = nx.spring_layout(G, iterations=100, seed=39775)

        # Create a 2x2 subplot
        fig, all_axes = plt.subplots(2, 2)
        ax = all_axes.flat

        # Draw graphs in 4 different styles
        nx.draw(G, pos, ax=ax[0], font_size=8)
        nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False)
        nx.draw(
            G,
            pos,
            ax=ax[2],
            node_color="tab:green",
            edgecolors="tab:gray",  # Node surface color
            edge_color="tab:gray",  # Color of graph edges
            node_size=250,
            with_labels=False,
            width=6,
        )
        H = G.to_directed()
        nx.draw(
            H,
            pos,
            ax=ax[3],
            node_color="tab:orange",
            node_size=20,
            with_labels=False,
            arrowsize=10,
            width=2,
        )

        # Set margins for the axes so that nodes aren't clipped
        for a in ax:
            a.margins(0.10)
        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        # Allow the user to customize the grid dimensions
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4)

        if st.button("Generate"):
            # Generate a custom grid graph
            G_custom = nx.grid_2d_graph(rows, cols)  # Create the grid graph
            pos = nx.spring_layout(G_custom, iterations=100, seed=39775)

            # Create a 2x2 subplot
            fig, all_axes = plt.subplots(2, 2)
            ax = all_axes.flat

            # Draw graphs in 4 different styles
            nx.draw(G_custom, pos, ax=ax[0], font_size=8)
            nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False)
            nx.draw(
                G_custom,
                pos,
                ax=ax[2],
                node_color="tab:green",
                edgecolors="tab:gray",  # Node surface color
                edge_color="tab:gray",  # Color of graph edges
                node_size=250,
                with_labels=False,
                width=6,
            )
            H = G_custom.to_directed()
            nx.draw(
                H,
                pos,
                ax=ax[3],
                node_color="tab:orange",
                node_size=20,
                with_labels=False,
                arrowsize=10,
                width=2,
            )

            # Set margins for the axes so that nodes aren't clipped
            for a in ax:
                a.margins(0.10)
            fig.tight_layout()
            st.pyplot(fig)

# Display Drawing: Four Grids if selected
if sidebar_option == "Drawing: Four Grids":
    display_four_grids()

# Function to display Eigenvalue analysis for Drawing: Eigenvalues
def display_eigenvalue_analysis():
    st.title("Drawing: Eigenvalues")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate random graph with 1000 nodes and 5000 edges
        n = 1000
        m = 5000
        G = nx.gnm_random_graph(n, m, seed=5040)  # Seed for reproducibility

        # Calculate the normalized Laplacian matrix
        L = nx.normalized_laplacian_matrix(G)
        eigenvalues = np.linalg.eigvals(L.toarray())

        # Print largest and smallest eigenvalues
        st.write(f"Largest eigenvalue: {max(eigenvalues)}")
        st.write(f"Smallest eigenvalue: {min(eigenvalues)}")

        # Display the histogram of eigenvalues
        st.write("### Eigenvalue Histogram")
        plt.hist(eigenvalues, bins=100)
        plt.xlim(0, 2)  # Eigenvalues between 0 and 2
        st.pyplot(plt)

    elif option == "Create your own":
        # Allow the user to customize the number of nodes and edges
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
        m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500)

        if st.button("Generate"):
            # Generate a random graph with the custom number of nodes and edges
            G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040)  # Seed for reproducibility

            # Calculate the normalized Laplacian matrix
            L = nx.normalized_laplacian_matrix(G_custom)
            eigenvalues = np.linalg.eigvals(L.toarray())

            # Print largest and smallest eigenvalues
            st.write(f"Largest eigenvalue: {max(eigenvalues)}")
            st.write(f"Smallest eigenvalue: {min(eigenvalues)}")

            # Display the histogram of eigenvalues
            st.write("### Eigenvalue Histogram")
            plt.hist(eigenvalues, bins=100)
            plt.xlim(0, 2)  # Eigenvalues between 0 and 2
            st.pyplot(plt)

# Display Drawing: Eigenvalues if selected
if sidebar_option == "Drawing: Eigenvalues":
    display_eigenvalue_analysis()

# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
    pathlengths = []
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    dist = {}
    for p in pathlengths:
        dist[p] = dist.get(p, 0) + 1
    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    # Visualize the graph
    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)  # Seed layout for reproducibility
    draw_graph(G, pos)

# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
    st.write("### Adjacency List:")
    for line in nx.generate_adjlist(G):
        st.write(line)
    
    # Write the graph's edge list to a file
    st.write("### Writing Edge List to 'grid.edgelist' file:")
    nx.write_edgelist(G, path="grid.edgelist", delimiter=":")  # Save edge list
    st.write("Edge list written to 'grid.edgelist'")

    # Read the graph from the edge list
    st.write("### Reading Edge List from 'grid.edgelist' file:")
    H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    st.write("Edge list read into graph H")

    # Visualize the graph
    st.write("### Graph Visualization:")
    pos = nx.spring_layout(H, seed=200)  # Seed for reproducibility
    draw_graph(H, pos)

# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
    options = {
        "font_size": 36,
        "node_size": 3000,
        "node_color": "white",
        "edgecolors": "black",
        "linewidths": 5,
        "width": 5,
    }
    
    # Draw the network
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Simple Directed Graphs for Basic: Simple graph Directed
def display_simple_directed_graph(G, pos=None):
    options = {
        "node_size": 500,
        "node_color": "lightblue",
        "arrowsize": 20,
        "width": 2,
        "edge_color": "gray",
    }
    
    # Draw the directed graph with the given positions and options
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Custom Node Position Graphs for Drawing: Custom Node Position
def display_custom_node_position():
    st.title("Drawing: Custom Node Position")
    
    # Default example graph (path graph with custom node position)
    G = nx.path_graph(20)
    center_node = 5
    edge_nodes = set(G) - {center_node}
    
    # Ensure the nodes around the circle are evenly distributed
    pos = nx.circular_layout(G.subgraph(edge_nodes))
    pos[center_node] = np.array([0, 0])  # Manually specify node position
    
    # Draw the graph
    draw_graph(G, pos)

# Function to display Cluster Layout for Drawing: Cluster Layout
def display_cluster_layout():
    st.title("Drawing: Cluster Layout")

    G = nx.davis_southern_women_graph()  # Example graph
    communities = nx.community.greedy_modularity_communities(G)

    # Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor
    supergraph = nx.cycle_graph(len(communities))
    superpos = nx.spring_layout(G, scale=50, seed=429)

    # Use the "supernode" positions as the center of each node cluster
    centers = list(superpos.values())
    pos = {}
    for center, comm in zip(centers, communities):
        pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))

        # Nodes colored by cluster
    for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
        nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
    nx.draw_networkx_edges(G, pos=pos)

    plt.tight_layout()
    st.pyplot(plt)

# Function to display Degree Analysis for Drawing: Degree Analysis
def display_degree_analysis():
    st.title("Drawing: Degree Analysis")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.gnp_random_graph(100, 0.02, seed=10374196)
        
        degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
        dmax = max(degree_sequence)

        fig = plt.figure("Degree of a random graph", figsize=(8, 8))
        # Create a gridspec for adding subplots of different sizes
        axgrid = fig.add_gridspec(5, 4)

        ax0 = fig.add_subplot(axgrid[0:3, :])
        Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
        pos = nx.spring_layout(Gcc, seed=10396953)
        nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
        nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
        ax0.set_title("Connected components of G")
        ax0.set_axis_off()

        ax1 = fig.add_subplot(axgrid[3:, :2])
        ax1.plot(degree_sequence, "b-", marker="o")
        ax1.set_title("Degree Rank Plot")
        ax1.set_ylabel("Degree")
        ax1.set_xlabel("Rank")

        ax2 = fig.add_subplot(axgrid[3:, 2:])
        ax2.bar(*np.unique(degree_sequence, return_counts=True))
        ax2.set_title("Degree histogram")
        ax2.set_xlabel("Degree")
        ax2.set_ylabel("# of Nodes")

        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100)
        p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02)
        
        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196)
                degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True)
                dmax = max(degree_sequence)

                fig = plt.figure("Degree of a random graph", figsize=(8, 8))
                # Create a gridspec for adding subplots of different sizes
                axgrid = fig.add_gridspec(5, 4)

                ax0 = fig.add_subplot(axgrid[0:3, :])
                Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0])
                pos = nx.spring_layout(Gcc, seed=10396953)
                nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
                nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
                ax0.set_title("Connected components of G")
                ax0.set_axis_off()

                ax1 = fig.add_subplot(axgrid[3:, :2])
                ax1.plot(degree_sequence, "b-", marker="o")
                ax1.set_title("Degree Rank Plot")
                ax1.set_ylabel("Degree")
                ax1.set_xlabel("Rank")

                ax2 = fig.add_subplot(axgrid[3:, 2:])
                ax2.bar(*np.unique(degree_sequence, return_counts=True))
                ax2.set_title("Degree histogram")
                ax2.set_xlabel("Degree")
                ax2.set_ylabel("# of Nodes")

                fig.tight_layout()
                st.pyplot(fig)

# Function to display Ego Graph for Drawing: Ego Graph
def display_ego_graph():
    st.title("Drawing: Ego Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create a BA model graph - use seed for reproducibility
        n = 1000
        m = 2
        seed = 20532
        G = nx.barabasi_albert_graph(n, m, seed=seed)

        # Find node with largest degree
        node_and_degree = G.degree()
        (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

        # Create ego graph of main hub
        hub_ego = nx.ego_graph(G, largest_hub)

        # Draw graph
        pos = nx.spring_layout(hub_ego, seed=seed)  # Seed layout for reproducibility
        nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

        # Draw ego as large and red
        options = {"node_size": 300, "node_color": "r"}
        nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
        plt.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
        m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2)

        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532)

                # Find node with largest degree
                node_and_degree = G_custom.degree()
                (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

                # Create ego graph of main hub
                hub_ego = nx.ego_graph(G_custom, largest_hub)

                # Draw graph
                pos = nx.spring_layout(hub_ego, seed=20532)  # Seed layout for reproducibility
                nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

                # Draw ego as large and red
                options = {"node_size": 300, "node_color": "r"}
                nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
                plt.tight_layout()
                st.pyplot(plt)

# Display Drawing: Ego Graph if selected
if sidebar_option == "Drawing: Ego Graph":
    display_ego_graph()

# Display Basic: Properties if selected
elif sidebar_option == "Basic: Properties":
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
    st.title("Basic: Read and write graphs")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.grid_2d_graph(5, 5)
        display_read_write_graph(G)

    elif option == "Create your own":
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)

        if st.button("Generate"):
            if rows >= 2 and cols >= 2:
                G_custom = nx.grid_2d_graph(rows, cols)
                display_read_write_graph(G_custom)

# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
    st.title("Basic: Simple graph")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.Graph()
        G.add_edge(1, 2)
        G.add_edge(1, 3)
        G.add_edge(1, 5)
        G.add_edge(2, 3)
        G.add_edge(3, 4)
        G.add_edge(4, 5)

        pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
        display_simple_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.Graph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_graph(G_custom, pos)

# Display Basic: Simple Directed Graph if selected
elif sidebar_option == "Basic: Simple graph Directed":
    st.title("Basic: Simple graph Directed")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])

        left_nodes = [0, 1, 2]
        middle_nodes = [3, 4]
        right_nodes = [5, 6]

        pos = {n: (0, i) for i, n in enumerate(left_nodes)}
        pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
        pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})

        display_simple_directed_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.DiGraph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_directed_graph(G_custom, pos)

# Display Drawing: Custom Node Position if selected
elif sidebar_option == "Drawing: Custom Node Position":
    display_custom_node_position()

# Display Drawing: Cluster Layout if selected
elif sidebar_option == "Drawing: Cluster Layout":
    display_cluster_layout()

# Display Drawing: Degree Analysis if selected
elif sidebar_option == "Drawing: Degree Analysis":
    display_degree_analysis()