File size: 50,934 Bytes
38f979d
34c2aef
2b5132f
8cbf79a
 
92a2cc5
cad7624
8aebdb6
38f979d
f2eec95
8f75d16
f2eec95
72f2a80
ec08d04
92a2cc5
e3c5c63
6bb529c
580e1c2
0586bdc
b79f9b1
 
98c04d6
8038dda
8cbf79a
 
 
8038dda
 
b79f9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5478e5a
 
 
 
 
97613a3
5478e5a
 
 
 
 
 
97613a3
5478e5a
00a8318
 
 
 
 
5478e5a
 
97613a3
00a8318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79f9b1
 
 
 
 
0cb1c8f
 
e316c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb1c8f
 
e316c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459eb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e316c4c
 
 
 
 
267a5b8
49f6468
 
 
 
 
 
1e8e554
 
49f6468
 
 
 
b2c6bfa
1e8e554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c6bfa
1e8e554
b2c6bfa
49f6468
 
 
1e8e554
49f6468
 
1e8e554
 
79f8574
49f6468
1e8e554
6d7260d
1e8e554
 
 
6d7260d
 
1e8e554
79f8574
49f6468
79f8574
 
 
1f8cc08
1e8e554
 
6d7260d
1e8e554
 
79f8574
 
49f6468
1e8e554
 
79f8574
1e8e554
b2c6bfa
1e8e554
b2c6bfa
79f8574
49f6468
 
 
 
 
0586bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60586bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de8ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580e1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f414108
580e1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb529c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed267a
4a12384
 
2ed267a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a12384
 
2ed267a
4a12384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed267a
 
4a12384
2ed267a
 
 
 
 
 
 
 
 
 
 
 
4a12384
 
 
 
 
2ed267a
50d794a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed267a
 
 
 
 
 
50d794a
2ed267a
 
 
 
 
 
 
 
 
 
 
 
 
 
50d794a
 
 
 
 
e3c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad5dd3
 
 
e3c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3da41
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea80b0
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
8cbf79a
 
 
 
 
 
 
 
 
 
 
deebd1e
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
f2eec95
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
 
 
 
bfa97dc
 
ec08d04
bfa97dc
 
 
ec08d04
bfa97dc
 
 
 
 
ec08d04
 
bfa97dc
 
 
ec08d04
bfa97dc
 
cf159b9
 
 
 
 
 
 
 
 
bfa97dc
cf159b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
92a2cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
92a2cc5
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
8cbf79a
e39c5f4
8cbf79a
 
 
e39c5f4
8cbf79a
 
 
f2eec95
8cbf79a
 
 
 
 
 
 
e39c5f4
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a61687
8cbf79a
 
e39c5f4
8cbf79a
5a61687
8cbf79a
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
e95128d
8cbf79a
 
 
 
 
 
 
 
e95128d
8cbf79a
 
 
 
 
57e492d
8cbf79a
72f2a80
deebd1e
ec08d04
 
 
 
cf159b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
import streamlit as st
import itertools as it
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from operator import itemgetter
import math  # Import the math module


# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option", 
                                 ["Select an option", "Basic: Properties", 
                                  "Basic: Read and write graphs", "Basic: Simple graph", 
                                  "Basic: Simple graph Directed", "Drawing: Custom Node Position",
                                  "Drawing: Cluster Layout", "Drawing: Degree Analysis",
                                  "Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids",
                                  "Drawing: House With Colors", "Drawing: Labels And Colors", 
                                  "Drawing: Multipartite Layout", "Drawing: Node Colormap",
                                  "Drawing: Rainbow Coloring", "Drawing: Random Geometric Graph","Drawing: Self-loops",
                                  "Drawing: Simple Path", "Drawing: Spectral Embedding", "Drawing: Traveling Salesman Problem",
                                  "Drawing: Weighted Graph"])

# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization"):
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Function to display Weighted Graph
def display_weighted_graph():
    st.title("Drawing: Weighted Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default weighted graph example
        G = nx.Graph()

        G.add_edge("a", "b", weight=0.6)
        G.add_edge("a", "c", weight=0.2)
        G.add_edge("c", "d", weight=0.1)
        G.add_edge("c", "e", weight=0.7)
        G.add_edge("c", "f", weight=0.9)
        G.add_edge("a", "d", weight=0.3)

        elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] > 0.5]
        esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] <= 0.5]

        pos = nx.spring_layout(G, seed=7)  # positions for all nodes - seed for reproducibility

        # nodes
        nx.draw_networkx_nodes(G, pos, node_size=700)

        # edges
        nx.draw_networkx_edges(G, pos, edgelist=elarge, width=6)
        nx.draw_networkx_edges(
            G, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed"
        )

        # node labels
        nx.draw_networkx_labels(G, pos, font_size=20, font_family="sans-serif")
        # edge weight labels
        edge_labels = nx.get_edge_attributes(G, "weight")
        nx.draw_networkx_edge_labels(G, pos, edge_labels)

        ax = plt.gca()
        ax.margins(0.08)
        plt.axis("off")
        plt.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own graph with edges and weights
        edge_input = st.text_area(
            "Enter edges with weights (format: node1,node2,weight;node1,node2,weight;...)",
            "a,b,0.6;a,c,0.2;c,d,0.1;c,e,0.7;c,f,0.9;a,d,0.3"
        )

        # Parse the input string
        edges = edge_input.split(";")
        edge_list = []
        for edge in edges:
            node1, node2, weight = edge.split(",")
            edge_list.append((node1.strip(), node2.strip(), float(weight.strip())))

        # Add a button to generate the graph
        generate_button = st.button("Generate Graph")

        if generate_button:
            G_custom = nx.Graph()

            # Add edges to the graph
            for node1, node2, weight in edge_list:
                G_custom.add_edge(node1, node2, weight=weight)

            # Create layout for visualization
            pos = nx.spring_layout(G_custom, seed=7)

            # Determine edges based on weight
            elarge = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] > 0.5]
            esmall = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] <= 0.5]

            # Draw the graph
            nx.draw_networkx_nodes(G_custom, pos, node_size=700)
            nx.draw_networkx_edges(G_custom, pos, edgelist=elarge, width=6)
            nx.draw_networkx_edges(
                G_custom, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed"
            )
            nx.draw_networkx_labels(G_custom, pos, font_size=20, font_family="sans-serif")
            edge_labels = nx.get_edge_attributes(G_custom, "weight")
            nx.draw_networkx_edge_labels(G_custom, pos, edge_labels)

            ax = plt.gca()
            ax.margins(0.08)
            plt.axis("off")
            plt.tight_layout()
            st.pyplot(plt)

# Display Drawing: Weighted Graph if selected
if sidebar_option == "Drawing: Weighted Graph":
    display_weighted_graph()

from networkx.algorithms.approximation import christofides

# Function to display Traveling Salesman Problem
def display_tsp():
    st.title("Drawing: Traveling Salesman Problem")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of random geometric graph with TSP solution
        G = nx.random_geometric_graph(20, radius=0.4, seed=3)
        pos = nx.get_node_attributes(G, "pos")

        # Depot should be at (0.5, 0.5)
        pos[0] = (0.5, 0.5)

        H = G.copy()

        # Calculating the distances between the nodes as edge's weight.
        for i in range(len(pos)):
            for j in range(i + 1, len(pos)):
                dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1])
                dist = dist
                G.add_edge(i, j, weight=dist)

        # Find TSP cycle using Christofides' approximation
        cycle = christofides(G, weight="weight")
        edge_list = list(nx.utils.pairwise(cycle))

        # Draw closest edges on each node only
        nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5)

        # Draw the route
        nx.draw_networkx(
            G,
            pos,
            with_labels=True,
            edgelist=edge_list,
            edge_color="red",
            node_size=200,
            width=3,
        )

        st.pyplot(plt)
        st.write("The route of the traveler is:", cycle)

    elif option == "Create your own":
        # User can create their own graph
        num_nodes = st.slider("Number of nodes:", min_value=3, max_value=30, value=20)
        radius = st.slider("Edge radius:", min_value=0.1, max_value=1.0, value=0.4)

        # Add a button to generate a new graph
        generate_button = st.button("Generate Graph")

        if generate_button:
            # Create random geometric graph based on user input
            G_custom = nx.random_geometric_graph(num_nodes, radius, seed=3)
            pos = nx.get_node_attributes(G_custom, "pos")

            # Depot should be at (0.5, 0.5)
            pos[0] = (0.5, 0.5)

            H = G_custom.copy()

            # Calculating the distances between the nodes as edge's weight.
            for i in range(len(pos)):
                for j in range(i + 1, len(pos)):
                    dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1])
                    dist = dist
                    G_custom.add_edge(i, j, weight=dist)

            # Find TSP cycle using Christofides' approximation
            cycle = christofides(G_custom, weight="weight")
            edge_list = list(nx.utils.pairwise(cycle))

            # Draw closest edges on each node only
            nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5)

            # Draw the TSP route
            nx.draw_networkx(
                G_custom,
                pos,
                with_labels=True,
                edgelist=edge_list,
                edge_color="red",
                node_size=200,
                width=3,
            )

            st.pyplot(plt)
            st.write("The route of the traveler is:", cycle)

# Display Drawing: Traveling Salesman Problem if selected
if sidebar_option == "Drawing: Traveling Salesman Problem":
    display_tsp()

# Function to display Drawing: Spectral Embedding
def display_spectral_embedding():
    st.title("Drawing: Spectral Embedding")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of spectral embedding with a grid graph
        options = {"node_color": "C0", "node_size": 100}  # No labels
        G = nx.grid_2d_graph(6, 6)

        fig, axs = plt.subplots(3, 3, figsize=(12, 12))
        axs = axs.flatten()

        for i in range(7):  # Looping over 7 images
            if i == 0:
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 1:
                G.remove_edge((2, 2), (2, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 2:
                G.remove_edge((3, 2), (3, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 3:
                G.remove_edge((2, 2), (3, 2))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 4:
                G.remove_edge((2, 3), (3, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 5:
                G.remove_edge((1, 2), (1, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 6:
                G.remove_edge((4, 2), (4, 3))
                nx.draw_spectral(G, **options, ax=axs[i])

        # Hide the last two subplots (8th and 9th)
        for j in range(7, 9):
            fig.delaxes(axs[j])  # Delete the extra axes

        st.pyplot(fig)

    elif option == "Create your own":
        # User can interactively modify the grid and see the results
        grid_size = st.slider("Choose grid size (n x n):", min_value=3, max_value=10, value=6)
        G_custom = nx.grid_2d_graph(grid_size, grid_size)

        # List all edges to allow removal
        all_edges = list(G_custom.edges())

        # Collect user input for edges to remove (before showing the "Generate" button)
        selected_edges_per_graph = []
        for i in range(7):  # Loop over 7 graphs
            selected_edges = st.multiselect(f"Select edges to remove for graph {i+1}:",
                                            options=[str(edge) for edge in all_edges])
            selected_edges_per_graph.append(selected_edges)

        # Add "Generate" button after edge selection
        generate_button = st.button("Generate Graph")

        if generate_button:
            fig, axs = plt.subplots(3, 3, figsize=(12, 12))
            axs = axs.flatten()

            # Loop through each subplot and allow edge removal individually
            for i in range(7):  # Loop over 7 graphs
                edges_to_remove = [tuple(eval(edge)) for edge in selected_edges_per_graph[i]]

                # Remove the selected edges
                G_custom_copy = G_custom.copy()
                G_custom_copy.remove_edges_from(edges_to_remove)

                # Draw the graph with removed edges
                nx.draw_spectral(G_custom_copy, **{"node_color": "C0", "node_size": 100}, ax=axs[i])

            # Hide the last two subplots (8th and 9th)
            for j in range(7, 9):
                fig.delaxes(axs[j])  # Delete the extra axes

            st.pyplot(fig)

# Display Drawing: Spectral Embedding if selected
if sidebar_option == "Drawing: Spectral Embedding":
    display_spectral_embedding()

# Function to display Drawing: Simple Path
def display_simple_path():
    st.title("Drawing: Simple Path")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of a simple path graph
        G = nx.path_graph(8)
        pos = nx.spring_layout(G, seed=47)  # Seed layout for reproducibility

        # Draw the graph
        nx.draw(G, pos=pos)
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own path graph with a custom number of nodes
        num_nodes = st.number_input("Number of nodes in the path:", min_value=2, max_value=50, value=8)

        if st.button("Generate Graph"):
            # Generate a path graph with user-specified number of nodes
            G_custom = nx.path_graph(num_nodes)
            pos = nx.spring_layout(G_custom, seed=47)  # Seed layout for reproducibility

            # Draw the graph
            nx.draw(G_custom, pos=pos)
            st.pyplot(plt)

# Display Drawing: Simple Path if selected
if sidebar_option == "Drawing: Simple Path":
    display_simple_path()

# Function to display Drawing: Self-loops
def display_self_loops():
    st.title("Drawing: Self-loops")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of a graph with self-loops
        G = nx.complete_graph(3, create_using=nx.DiGraph)
        G.add_edge(0, 0)  # Add a self-loop to node 0
        pos = nx.circular_layout(G)

        # Draw the graph
        nx.draw(G, pos, with_labels=True)

        # Add self-loops to the remaining nodes
        edgelist = [(1, 1), (2, 2)]
        G.add_edges_from(edgelist)

        # Draw the newly added self-loops with different formatting
        nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed")
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own graph with self-loops
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=20, value=3)
        add_self_loops = st.checkbox("Add self-loops to all nodes?", value=True)

        if st.button("Generate Graph"):
            # Generate a complete graph
            G = nx.complete_graph(num_nodes, create_using=nx.DiGraph)
            
            # Optionally add self-loops to all nodes
            if add_self_loops:
                for node in G.nodes():
                    G.add_edge(node, node)

            pos = nx.circular_layout(G)
            
            # Draw the graph with self-loops
            nx.draw(G, pos, with_labels=True)

            # Style self-loops differently
            edgelist = [(node, node) for node in G.nodes()]
            nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed")
            st.pyplot(plt)

# Display Drawing: Self-loops if selected
if sidebar_option == "Drawing: Self-loops":
    display_self_loops()

# Function to display Drawing: Random Geometric Graph
def display_random_geometric_graph():
    st.title("Drawing: Random Geometric Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default random geometric graph example
        G = nx.random_geometric_graph(200, 0.125, seed=896803)
        pos = nx.get_node_attributes(G, "pos")

        # Find node near the center (0.5, 0.5)
        dmin = 1
        ncenter = 0
        for n in pos:
            x, y = pos[n]
            d = (x - 0.5) ** 2 + (y - 0.5) ** 2
            if d < dmin:
                ncenter = n
                dmin = d

        # Color by path length from node near center
        p = dict(nx.single_source_shortest_path_length(G, ncenter))

        plt.figure(figsize=(8, 8))
        nx.draw_networkx_edges(G, pos, alpha=0.4)
        nx.draw_networkx_nodes(
            G,
            pos,
            nodelist=list(p.keys()),
            node_size=80,
            node_color=list(p.values()),
            cmap=plt.cm.Reds_r,
        )

        plt.xlim(-0.05, 1.05)
        plt.ylim(-0.05, 1.05)
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own random geometric graph
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=200)
        distance = st.slider("Edge distance threshold (between 0 and 1):", 0.01, 1.0, 0.125)

        if st.button("Generate Graph"):
            # Generate the graph with user input
            G = nx.random_geometric_graph(num_nodes, distance, seed=896803)
            pos = nx.get_node_attributes(G, "pos")

            # Find node near the center (0.5, 0.5)
            dmin = 1
            ncenter = 0
            for n in pos:
                x, y = pos[n]
                d = (x - 0.5) ** 2 + (y - 0.5) ** 2
                if d < dmin:
                    ncenter = n
                    dmin = d

            # Color by path length from node near center
            p = dict(nx.single_source_shortest_path_length(G, ncenter))

            plt.figure(figsize=(8, 8))
            nx.draw_networkx_edges(G, pos, alpha=0.4)
            nx.draw_networkx_nodes(
                G,
                pos,
                nodelist=list(p.keys()),
                node_size=80,
                node_color=list(p.values()),
                cmap=plt.cm.Reds_r,
            )

            plt.xlim(-0.05, 1.05)
            plt.ylim(-0.05, 1.05)
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: Random Geometric Graph if selected
if sidebar_option == "Drawing: Random Geometric Graph":
    display_random_geometric_graph()

# Function to display Drawing: Rainbow Coloring
def display_rainbow_coloring():
    st.title("Drawing: Rainbow Coloring")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Rainbow Coloring with default parameters
        node_dist_to_color = {
            1: "tab:red",
            2: "tab:orange",
            3: "tab:olive",
            4: "tab:green",
            5: "tab:blue",
            6: "tab:purple",
        }

        nnodes = 13
        G = nx.complete_graph(nnodes)

        n = (nnodes - 1) // 2
        ndist_iter = list(range(1, n + 1))
        ndist_iter += ndist_iter[::-1]

        def cycle(nlist, n):
            return nlist[-n:] + nlist[:-n]

        nodes = list(G.nodes())
        for i, nd in enumerate(ndist_iter):
            for u, v in zip(nodes, cycle(nodes, i + 1)):
                G[u][v]["color"] = node_dist_to_color[nd]

        pos = nx.circular_layout(G)
        # Create a figure with 1:1 aspect ratio to preserve the circle.
        fig, ax = plt.subplots(figsize=(8, 8))
        node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0}
        nx.draw_networkx_nodes(G, pos, **node_opts)
        nx.draw_networkx_labels(G, pos, font_size=14)
        # Extract color from edge data
        edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)]
        nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors)

        ax.set_axis_off()
        fig.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        nnodes = st.number_input("Number of nodes (max=14):", min_value=2, max_value=50, value=13)
        
        # Allow users to create their own color map
        red = st.color_picker("Select a color for Red (1)", "#ff0000")
        orange = st.color_picker("Select a color for Orange (2)", "#ff7f00")
        olive = st.color_picker("Select a color for Olive (3)", "#808000")
        green = st.color_picker("Select a color for Green (4)", "#008000")
        blue = st.color_picker("Select a color for Blue (5)", "#0000ff")
        purple = st.color_picker("Select a color for Purple (6)", "#800080")
        
        node_dist_to_color = {
            1: red,
            2: orange,
            3: olive,
            4: green,
            5: blue,
            6: purple,
        }

        if st.button("Generate Graph"):
            G = nx.complete_graph(nnodes)

            n = (nnodes - 1) // 2
            ndist_iter = list(range(1, n + 1))
            ndist_iter += ndist_iter[::-1]

            def cycle(nlist, n):
                return nlist[-n:] + nlist[:-n]

            nodes = list(G.nodes())
            for i, nd in enumerate(ndist_iter):
                for u, v in zip(nodes, cycle(nodes, i + 1)):
                    G[u][v]["color"] = node_dist_to_color[nd]

            pos = nx.circular_layout(G)
            # Create a figure with 1:1 aspect ratio to preserve the circle.
            fig, ax = plt.subplots(figsize=(8, 8))
            node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0}
            nx.draw_networkx_nodes(G, pos, **node_opts)
            nx.draw_networkx_labels(G, pos, font_size=14)
            # Extract color from edge data
            edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)]
            nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors)

            ax.set_axis_off()
            fig.tight_layout()
            st.pyplot(plt)

# Display Drawing: Rainbow Coloring if selected
if sidebar_option == "Drawing: Rainbow Coloring":
    display_rainbow_coloring()

# Function to display Drawing: Node Colormap
def display_node_colormap():
    st.title("Drawing: Node Colormap")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.cycle_graph(24)
        pos = nx.circular_layout(G)
        nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
        st.pyplot(plt)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=100, value=24)
        color_map = st.selectbox("Select a colormap:", plt.colormaps(), index=plt.colormaps().index('Blues'))

        if st.button("Generate Graph"):
            # Create cycle graph with custom number of nodes
            G_custom = nx.cycle_graph(num_nodes)
            pos = nx.circular_layout(G_custom)
            nx.draw(G_custom, pos, node_color=range(num_nodes), node_size=800, cmap=plt.get_cmap(color_map))
            st.pyplot(plt)

# Display Drawing: Node Colormap if selected
if sidebar_option == "Drawing: Node Colormap":
    display_node_colormap()

# Function to create a multipartite graph
def multilayered_graph(*subset_sizes):
    G = nx.Graph()
    layers = len(subset_sizes)
    node_id = 0

    # Create nodes for each subset and add edges between nodes in adjacent layers
    for i, size in enumerate(subset_sizes):
        for j in range(size):
            G.add_node(node_id, layer=i)  # Assign a layer attribute
            node_id += 1

    # Add edges between nodes in adjacent layers
    node_ids = list(G.nodes())
    for i in range(layers - 1):
        layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i]
        next_layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i + 1]
        for node in layer_nodes:
            for next_node in next_layer_nodes:
                G.add_edge(node, next_node)

    return G

# Function to display Multipartite Layout
def display_multipartite_layout():
    st.title("Drawing: Multipartite Layout")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3]
        subset_color = [
            "gold", "violet", "violet", "violet", "violet", 
            "limegreen", "limegreen", "darkorange"
        ]
        
        # Generate and plot multipartite graph
        G = multilayered_graph(*subset_sizes)
        color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)]
        pos = nx.multipartite_layout(G, subset_key="layer")
        
        plt.figure(figsize=(8, 8))
        nx.draw(G, pos, node_color=color, with_labels=False)
        plt.axis("equal")
        st.pyplot(plt)

    elif option == "Create your own":
        # Let the user input the subset sizes and colors
        st.write("Enter the subset sizes and colors to create your own multipartite graph.")

        subset_sizes_input = st.text_area("Enter subset sizes (comma-separated, e.g., 5,5,4,3):", value="5,5,4,3,2,4,4,3")
        subset_sizes = list(map(int, subset_sizes_input.split(',')))

        subset_colors_input = st.text_area("Enter subset colors (comma-separated, e.g., gold,violet,green):", value="gold,violet,violet,violet,violet,limegreen,limegreen,darkorange")
        subset_colors = subset_colors_input.split(',')

        # Check if the number of colors matches the number of subsets
        if len(subset_sizes) != len(subset_colors):
            st.error("The number of colors should match the number of subsets.")
        else:
            # Add a button to generate the graph
            if st.button("Generate Graph"):
                # Generate and plot multipartite graph
                G = multilayered_graph(*subset_sizes)
                color = [subset_colors[data["layer"]] for v, data in G.nodes(data=True)]
                pos = nx.multipartite_layout(G, subset_key="layer")
                
                plt.figure(figsize=(8, 8))
                nx.draw(G, pos, node_color=color, with_labels=False)
                plt.axis("equal")
                st.pyplot(plt)

# Display Drawing: Multipartite Layout if selected
if sidebar_option == "Drawing: Multipartite Layout":
    display_multipartite_layout()

# Function to display Labels and Colors
def display_labels_and_colors():
    st.title("Drawing: Labels And Colors")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create a cubical graph
        G = nx.cubical_graph()
        pos = nx.spring_layout(G, seed=3113794652)  # positions for all nodes

        # Draw nodes with different colors
        options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9}
        nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options)
        nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options)

        # Draw edges
        nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
        nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
            width=8,
            alpha=0.5,
            edge_color="tab:red",
        )
        nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
            width=8,
            alpha=0.5,
            edge_color="tab:blue",
        )

        # Add labels for nodes
        labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"}
        nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke")

        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # Let the user input the nodes and edges of the graph
        st.write("Enter the nodes and edges to create your own labeled graph.")

        nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d")
        node_labels = nodes.split(',')

        edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d")
        edge_list = [tuple(edge.split('-')) for edge in edges.split(',')]

        # Let user choose colors for nodes and edges
        node_color = st.color_picker("Pick a color for nodes:", "#FF6347")
        edge_color = st.color_picker("Pick a color for edges:", "#4682B4")

        # Add a button to generate the graph
        if st.button("Generate Graph"):
            # Generate graph based on user input
            G_custom = nx.Graph()
            G_custom.add_nodes_from(node_labels)
            G_custom.add_edges_from(edge_list)

            # Generate layout for the nodes
            pos_custom = nx.spring_layout(G_custom)

            # Draw the graph
            nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9)
            nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7)

            # Create custom labels
            custom_labels = {node: f"${node}$" for node in node_labels}
            nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke")

            plt.tight_layout()
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: Labels And Colors if selected
if sidebar_option == "Drawing: Labels And Colors":
    display_labels_and_colors()

# Function to display Drawing: House With Colors
def display_house_with_colors():
    st.title("Drawing: House With Colors")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create the house graph and explicitly set positions
        G = nx.house_graph()
        pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}

        # Plot nodes with different properties for the "wall" and "roof" nodes
        nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue")
        nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange")
        nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
        
        # Customize axes
        ax = plt.gca()
        ax.margins(0.11)
        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # Allow the user to specify node positions and colors
        st.write("Specify positions for the house graph nodes.")

        positions = {}
        for i in range(5):
            x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
            y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
            
            positions[i] = (x, y)

        # Allow the user to specify colors for wall and roof nodes
        wall_color = st.color_picker("Wall color:", "#0000FF")
        roof_color = st.color_picker("Roof color:", "#FFA500")

        if st.button("Generate"):
            # Create the house graph with the specified positions
            G_custom = nx.house_graph()

            # Plot nodes with user-defined properties for wall and roof nodes
            nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color)
            nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color)
            nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6)

            # Customize axes
            ax = plt.gca()
            ax.margins(0.11)
            plt.tight_layout()
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: House With Colors if selected
if sidebar_option == "Drawing: House With Colors":
    display_house_with_colors()

# Function to display Four Grids visualization for Drawing: Four Grids
def display_four_grids():
    st.title("Drawing: Four Grids")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate a 4x4 grid graph
        G = nx.grid_2d_graph(4, 4)  # 4x4 grid
        pos = nx.spring_layout(G, iterations=100, seed=39775)

        # Create a 2x2 subplot
        fig, all_axes = plt.subplots(2, 2)
        ax = all_axes.flat

        # Draw graphs in 4 different styles
        nx.draw(G, pos, ax=ax[0], font_size=8)
        nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False)
        nx.draw(
            G,
            pos,
            ax=ax[2],
            node_color="tab:green",
            edgecolors="tab:gray",  # Node surface color
            edge_color="tab:gray",  # Color of graph edges
            node_size=250,
            with_labels=False,
            width=6,
        )
        H = G.to_directed()
        nx.draw(
            H,
            pos,
            ax=ax[3],
            node_color="tab:orange",
            node_size=20,
            with_labels=False,
            arrowsize=10,
            width=2,
        )

        # Set margins for the axes so that nodes aren't clipped
        for a in ax:
            a.margins(0.10)
        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        # Allow the user to customize the grid dimensions
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4)

        if st.button("Generate"):
            # Generate a custom grid graph
            G_custom = nx.grid_2d_graph(rows, cols)  # Create the grid graph
            pos = nx.spring_layout(G_custom, iterations=100, seed=39775)

            # Create a 2x2 subplot
            fig, all_axes = plt.subplots(2, 2)
            ax = all_axes.flat

            # Draw graphs in 4 different styles
            nx.draw(G_custom, pos, ax=ax[0], font_size=8)
            nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False)
            nx.draw(
                G_custom,
                pos,
                ax=ax[2],
                node_color="tab:green",
                edgecolors="tab:gray",  # Node surface color
                edge_color="tab:gray",  # Color of graph edges
                node_size=250,
                with_labels=False,
                width=6,
            )
            H = G_custom.to_directed()
            nx.draw(
                H,
                pos,
                ax=ax[3],
                node_color="tab:orange",
                node_size=20,
                with_labels=False,
                arrowsize=10,
                width=2,
            )

            # Set margins for the axes so that nodes aren't clipped
            for a in ax:
                a.margins(0.10)
            fig.tight_layout()
            st.pyplot(fig)

# Display Drawing: Four Grids if selected
if sidebar_option == "Drawing: Four Grids":
    display_four_grids()

# Function to display Eigenvalue analysis for Drawing: Eigenvalues
def display_eigenvalue_analysis():
    st.title("Drawing: Eigenvalues")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate random graph with 1000 nodes and 5000 edges
        n = 1000
        m = 5000
        G = nx.gnm_random_graph(n, m, seed=5040)  # Seed for reproducibility

        # Calculate the normalized Laplacian matrix
        L = nx.normalized_laplacian_matrix(G)
        eigenvalues = np.linalg.eigvals(L.toarray())

        # Print largest and smallest eigenvalues
        st.write(f"Largest eigenvalue: {max(eigenvalues)}")
        st.write(f"Smallest eigenvalue: {min(eigenvalues)}")

        # Display the histogram of eigenvalues
        st.write("### Eigenvalue Histogram")
        plt.hist(eigenvalues, bins=100)
        plt.xlim(0, 2)  # Eigenvalues between 0 and 2
        st.pyplot(plt)

    elif option == "Create your own":
        # Allow the user to customize the number of nodes and edges
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
        m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500)

        if st.button("Generate"):
            # Generate a random graph with the custom number of nodes and edges
            G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040)  # Seed for reproducibility

            # Calculate the normalized Laplacian matrix
            L = nx.normalized_laplacian_matrix(G_custom)
            eigenvalues = np.linalg.eigvals(L.toarray())

            # Print largest and smallest eigenvalues
            st.write(f"Largest eigenvalue: {max(eigenvalues)}")
            st.write(f"Smallest eigenvalue: {min(eigenvalues)}")

            # Display the histogram of eigenvalues
            st.write("### Eigenvalue Histogram")
            plt.hist(eigenvalues, bins=100)
            plt.xlim(0, 2)  # Eigenvalues between 0 and 2
            st.pyplot(plt)

# Display Drawing: Eigenvalues if selected
if sidebar_option == "Drawing: Eigenvalues":
    display_eigenvalue_analysis()

# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
    pathlengths = []
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    dist = {}
    for p in pathlengths:
        dist[p] = dist.get(p, 0) + 1
    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    # Visualize the graph
    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)  # Seed layout for reproducibility
    draw_graph(G, pos)

# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
    st.write("### Adjacency List:")
    for line in nx.generate_adjlist(G):
        st.write(line)
    
    # Write the graph's edge list to a file
    st.write("### Writing Edge List to 'grid.edgelist' file:")
    nx.write_edgelist(G, path="grid.edgelist", delimiter=":")  # Save edge list
    st.write("Edge list written to 'grid.edgelist'")

    # Read the graph from the edge list
    st.write("### Reading Edge List from 'grid.edgelist' file:")
    H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    st.write("Edge list read into graph H")

    # Visualize the graph
    st.write("### Graph Visualization:")
    pos = nx.spring_layout(H, seed=200)  # Seed for reproducibility
    draw_graph(H, pos)

# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
    options = {
        "font_size": 36,
        "node_size": 3000,
        "node_color": "white",
        "edgecolors": "black",
        "linewidths": 5,
        "width": 5,
    }
    
    # Draw the network
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Simple Directed Graphs for Basic: Simple graph Directed
def display_simple_directed_graph(G, pos=None):
    options = {
        "node_size": 500,
        "node_color": "lightblue",
        "arrowsize": 20,
        "width": 2,
        "edge_color": "gray",
    }
    
    # Draw the directed graph with the given positions and options
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Custom Node Position Graphs for Drawing: Custom Node Position
def display_custom_node_position():
    st.title("Drawing: Custom Node Position")
    
    # Default example graph (path graph with custom node position)
    G = nx.path_graph(20)
    center_node = 5
    edge_nodes = set(G) - {center_node}
    
    # Ensure the nodes around the circle are evenly distributed
    pos = nx.circular_layout(G.subgraph(edge_nodes))
    pos[center_node] = np.array([0, 0])  # Manually specify node position
    
    # Draw the graph
    draw_graph(G, pos)

# Function to display Cluster Layout for Drawing: Cluster Layout
def display_cluster_layout():
    st.title("Drawing: Cluster Layout")

    G = nx.davis_southern_women_graph()  # Example graph
    communities = nx.community.greedy_modularity_communities(G)

    # Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor
    supergraph = nx.cycle_graph(len(communities))
    superpos = nx.spring_layout(G, scale=50, seed=429)

    # Use the "supernode" positions as the center of each node cluster
    centers = list(superpos.values())
    pos = {}
    for center, comm in zip(centers, communities):
        pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))

        # Nodes colored by cluster
    for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
        nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
    nx.draw_networkx_edges(G, pos=pos)

    plt.tight_layout()
    st.pyplot(plt)

# Function to display Degree Analysis for Drawing: Degree Analysis
def display_degree_analysis():
    st.title("Drawing: Degree Analysis")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.gnp_random_graph(100, 0.02, seed=10374196)
        
        degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
        dmax = max(degree_sequence)

        fig = plt.figure("Degree of a random graph", figsize=(8, 8))
        # Create a gridspec for adding subplots of different sizes
        axgrid = fig.add_gridspec(5, 4)

        ax0 = fig.add_subplot(axgrid[0:3, :])
        Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
        pos = nx.spring_layout(Gcc, seed=10396953)
        nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
        nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
        ax0.set_title("Connected components of G")
        ax0.set_axis_off()

        ax1 = fig.add_subplot(axgrid[3:, :2])
        ax1.plot(degree_sequence, "b-", marker="o")
        ax1.set_title("Degree Rank Plot")
        ax1.set_ylabel("Degree")
        ax1.set_xlabel("Rank")

        ax2 = fig.add_subplot(axgrid[3:, 2:])
        ax2.bar(*np.unique(degree_sequence, return_counts=True))
        ax2.set_title("Degree histogram")
        ax2.set_xlabel("Degree")
        ax2.set_ylabel("# of Nodes")

        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100)
        p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02)
        
        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196)
                degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True)
                dmax = max(degree_sequence)

                fig = plt.figure("Degree of a random graph", figsize=(8, 8))
                # Create a gridspec for adding subplots of different sizes
                axgrid = fig.add_gridspec(5, 4)

                ax0 = fig.add_subplot(axgrid[0:3, :])
                Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0])
                pos = nx.spring_layout(Gcc, seed=10396953)
                nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
                nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
                ax0.set_title("Connected components of G")
                ax0.set_axis_off()

                ax1 = fig.add_subplot(axgrid[3:, :2])
                ax1.plot(degree_sequence, "b-", marker="o")
                ax1.set_title("Degree Rank Plot")
                ax1.set_ylabel("Degree")
                ax1.set_xlabel("Rank")

                ax2 = fig.add_subplot(axgrid[3:, 2:])
                ax2.bar(*np.unique(degree_sequence, return_counts=True))
                ax2.set_title("Degree histogram")
                ax2.set_xlabel("Degree")
                ax2.set_ylabel("# of Nodes")

                fig.tight_layout()
                st.pyplot(fig)

# Function to display Ego Graph for Drawing: Ego Graph
def display_ego_graph():
    st.title("Drawing: Ego Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create a BA model graph - use seed for reproducibility
        n = 1000
        m = 2
        seed = 20532
        G = nx.barabasi_albert_graph(n, m, seed=seed)

        # Find node with largest degree
        node_and_degree = G.degree()
        (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

        # Create ego graph of main hub
        hub_ego = nx.ego_graph(G, largest_hub)

        # Draw graph
        pos = nx.spring_layout(hub_ego, seed=seed)  # Seed layout for reproducibility
        nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

        # Draw ego as large and red
        options = {"node_size": 300, "node_color": "r"}
        nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
        plt.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
        m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2)

        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532)

                # Find node with largest degree
                node_and_degree = G_custom.degree()
                (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

                # Create ego graph of main hub
                hub_ego = nx.ego_graph(G_custom, largest_hub)

                # Draw graph
                pos = nx.spring_layout(hub_ego, seed=20532)  # Seed layout for reproducibility
                nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

                # Draw ego as large and red
                options = {"node_size": 300, "node_color": "r"}
                nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
                plt.tight_layout()
                st.pyplot(plt)

# Display Drawing: Ego Graph if selected
if sidebar_option == "Drawing: Ego Graph":
    display_ego_graph()

# Display Basic: Properties if selected
elif sidebar_option == "Basic: Properties":
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
    st.title("Basic: Read and write graphs")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.grid_2d_graph(5, 5)
        display_read_write_graph(G)

    elif option == "Create your own":
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)

        if st.button("Generate"):
            if rows >= 2 and cols >= 2:
                G_custom = nx.grid_2d_graph(rows, cols)
                display_read_write_graph(G_custom)

# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
    st.title("Basic: Simple graph")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.Graph()
        G.add_edge(1, 2)
        G.add_edge(1, 3)
        G.add_edge(1, 5)
        G.add_edge(2, 3)
        G.add_edge(3, 4)
        G.add_edge(4, 5)

        pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
        display_simple_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.Graph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_graph(G_custom, pos)

# Display Basic: Simple Directed Graph if selected
elif sidebar_option == "Basic: Simple graph Directed":
    st.title("Basic: Simple graph Directed")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])

        left_nodes = [0, 1, 2]
        middle_nodes = [3, 4]
        right_nodes = [5, 6]

        pos = {n: (0, i) for i, n in enumerate(left_nodes)}
        pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
        pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})

        display_simple_directed_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.DiGraph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_directed_graph(G_custom, pos)

# Display Drawing: Custom Node Position if selected
elif sidebar_option == "Drawing: Custom Node Position":
    display_custom_node_position()

# Display Drawing: Cluster Layout if selected
elif sidebar_option == "Drawing: Cluster Layout":
    display_cluster_layout()

# Display Drawing: Degree Analysis if selected
elif sidebar_option == "Drawing: Degree Analysis":
    display_degree_analysis()