Spaces:
Sleeping
Sleeping
File size: 43,271 Bytes
38f979d 34c2aef 2b5132f 8cbf79a 92a2cc5 38f979d f2eec95 8f75d16 f2eec95 72f2a80 ec08d04 92a2cc5 e3c5c63 6bb529c 580e1c2 0586bdc 49f6468 98c04d6 8038dda 8cbf79a 8038dda 49f6468 1f8cc08 49f6468 1f8cc08 49f6468 1f8cc08 49f6468 0586bdc 60586bc 0de8ad2 580e1c2 f414108 580e1c2 6bb529c 2ed267a 4a12384 2ed267a 4a12384 2ed267a 4a12384 2ed267a 4a12384 2ed267a 4a12384 2ed267a 50d794a 2ed267a 50d794a 2ed267a 50d794a e3c5c63 fad5dd3 e3c5c63 34f9627 d04c5d3 ba3da41 d04c5d3 dea80b0 d04c5d3 8cbf79a 98c04d6 8cbf79a 98c04d6 8cbf79a 98c04d6 8cbf79a deebd1e 8cbf79a e39c5f4 f2eec95 8cbf79a ec08d04 bfa97dc ec08d04 bfa97dc ec08d04 bfa97dc ec08d04 bfa97dc ec08d04 bfa97dc cf159b9 bfa97dc cf159b9 ec08d04 92a2cc5 8cbf79a 92a2cc5 8cbf79a e39c5f4 8cbf79a e39c5f4 8cbf79a e39c5f4 8cbf79a f2eec95 8cbf79a e39c5f4 8cbf79a 5a61687 8cbf79a e39c5f4 8cbf79a 5a61687 8cbf79a 57e492d 8cbf79a 57e492d 8cbf79a 57e492d 8cbf79a e95128d 8cbf79a e95128d 8cbf79a 57e492d 8cbf79a 72f2a80 deebd1e ec08d04 cf159b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 |
import streamlit as st
import itertools as it
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from operator import itemgetter
# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option",
["Select an option", "Basic: Properties",
"Basic: Read and write graphs", "Basic: Simple graph",
"Basic: Simple graph Directed", "Drawing: Custom Node Position",
"Drawing: Cluster Layout", "Drawing: Degree Analysis",
"Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids",
"Drawing: House With Colors", "Drawing: Labels And Colors",
"Drawing: Multipartite Layout", "Drawing: Node Colormap",
"Drawing: Rainbow Coloring", "Drawing: Random Geometric Graph","Drawing: Self-loops",
"Drawing: Simple Path", "Drawing: Spectral Embedding"])
# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization"):
plt.figure(figsize=(8, 6))
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
st.pyplot(plt)
# Function to display Drawing: Spectral Embedding
def display_spectral_embedding():
st.title("Drawing: Spectral Embedding")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Default example of spectral embedding with a grid graph
options = {"node_color": "C0", "node_size": 100}
G = nx.grid_2d_graph(6, 6)
fig, axs = plt.subplots(3, 3, figsize=(12, 12))
axs = axs.flatten()
for i in range(7):
if i == 0:
nx.draw_spectral(G, **options, ax=axs[i])
elif i == 1:
G.remove_edge((2, 2), (2, 3))
nx.draw_spectral(G, **options, ax=axs[i])
elif i == 2:
G.remove_edge((3, 2), (3, 3))
nx.draw_spectral(G, **options, ax=axs[i])
elif i == 3:
G.remove_edge((2, 2), (3, 2))
nx.draw_spectral(G, **options, ax=axs[i])
elif i == 4:
G.remove_edge((2, 3), (3, 3))
nx.draw_spectral(G, **options, ax=axs[i])
elif i == 5:
G.remove_edge((1, 2), (1, 3))
nx.draw_spectral(G, **options, ax=axs[i])
elif i == 6:
G.remove_edge((4, 2), (4, 3))
nx.draw_spectral(G, **options, ax=axs[i])
st.pyplot(fig)
elif option == "Create your own":
# User can interactively modify the grid and see the results
grid_size = st.slider("Choose grid size (n x n):", min_value=3, max_value=10, value=6)
G_custom = nx.grid_2d_graph(grid_size, grid_size)
# List all edges to allow removal
all_edges = list(G_custom.edges)
fig, axs = plt.subplots(3, 3, figsize=(12, 12))
axs = axs.flatten()
# Loop through each subplot and allow edge removal individually
for i in range(7):
selected_edges = st.multiselect(f"Select edges to remove for graph {i+1}:",
options=[str(edge) for edge in all_edges])
# Convert the selected edges from string to tuple
edges_to_remove = [tuple(eval(edge)) for edge in selected_edges]
# Remove the selected edges
G_custom_copy = G_custom.copy()
G_custom_copy.remove_edges_from(edges_to_remove)
# Draw the graph with removed edges
nx.draw_spectral(G_custom_copy, **{"node_color": "C0", "node_size": 100}, ax=axs[i])
st.pyplot(fig)
# Display Drawing: Spectral Embedding if selected
if sidebar_option == "Drawing: Spectral Embedding":
display_spectral_embedding()
# Function to display Drawing: Simple Path
def display_simple_path():
st.title("Drawing: Simple Path")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Default example of a simple path graph
G = nx.path_graph(8)
pos = nx.spring_layout(G, seed=47) # Seed layout for reproducibility
# Draw the graph
nx.draw(G, pos=pos)
st.pyplot(plt)
elif option == "Create your own":
# User can create their own path graph with a custom number of nodes
num_nodes = st.number_input("Number of nodes in the path:", min_value=2, max_value=50, value=8)
if st.button("Generate Graph"):
# Generate a path graph with user-specified number of nodes
G_custom = nx.path_graph(num_nodes)
pos = nx.spring_layout(G_custom, seed=47) # Seed layout for reproducibility
# Draw the graph
nx.draw(G_custom, pos=pos)
st.pyplot(plt)
# Display Drawing: Simple Path if selected
if sidebar_option == "Drawing: Simple Path":
display_simple_path()
# Function to display Drawing: Self-loops
def display_self_loops():
st.title("Drawing: Self-loops")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Default example of a graph with self-loops
G = nx.complete_graph(3, create_using=nx.DiGraph)
G.add_edge(0, 0) # Add a self-loop to node 0
pos = nx.circular_layout(G)
# Draw the graph
nx.draw(G, pos, with_labels=True)
# Add self-loops to the remaining nodes
edgelist = [(1, 1), (2, 2)]
G.add_edges_from(edgelist)
# Draw the newly added self-loops with different formatting
nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed")
st.pyplot(plt)
elif option == "Create your own":
# User can create their own graph with self-loops
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=20, value=3)
add_self_loops = st.checkbox("Add self-loops to all nodes?", value=True)
if st.button("Generate Graph"):
# Generate a complete graph
G = nx.complete_graph(num_nodes, create_using=nx.DiGraph)
# Optionally add self-loops to all nodes
if add_self_loops:
for node in G.nodes():
G.add_edge(node, node)
pos = nx.circular_layout(G)
# Draw the graph with self-loops
nx.draw(G, pos, with_labels=True)
# Style self-loops differently
edgelist = [(node, node) for node in G.nodes()]
nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed")
st.pyplot(plt)
# Display Drawing: Self-loops if selected
if sidebar_option == "Drawing: Self-loops":
display_self_loops()
# Function to display Drawing: Random Geometric Graph
def display_random_geometric_graph():
st.title("Drawing: Random Geometric Graph")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Default random geometric graph example
G = nx.random_geometric_graph(200, 0.125, seed=896803)
pos = nx.get_node_attributes(G, "pos")
# Find node near the center (0.5, 0.5)
dmin = 1
ncenter = 0
for n in pos:
x, y = pos[n]
d = (x - 0.5) ** 2 + (y - 0.5) ** 2
if d < dmin:
ncenter = n
dmin = d
# Color by path length from node near center
p = dict(nx.single_source_shortest_path_length(G, ncenter))
plt.figure(figsize=(8, 8))
nx.draw_networkx_edges(G, pos, alpha=0.4)
nx.draw_networkx_nodes(
G,
pos,
nodelist=list(p.keys()),
node_size=80,
node_color=list(p.values()),
cmap=plt.cm.Reds_r,
)
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
plt.axis("off")
st.pyplot(plt)
elif option == "Create your own":
# User can create their own random geometric graph
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=200)
distance = st.slider("Edge distance threshold (between 0 and 1):", 0.01, 1.0, 0.125)
if st.button("Generate Graph"):
# Generate the graph with user input
G = nx.random_geometric_graph(num_nodes, distance, seed=896803)
pos = nx.get_node_attributes(G, "pos")
# Find node near the center (0.5, 0.5)
dmin = 1
ncenter = 0
for n in pos:
x, y = pos[n]
d = (x - 0.5) ** 2 + (y - 0.5) ** 2
if d < dmin:
ncenter = n
dmin = d
# Color by path length from node near center
p = dict(nx.single_source_shortest_path_length(G, ncenter))
plt.figure(figsize=(8, 8))
nx.draw_networkx_edges(G, pos, alpha=0.4)
nx.draw_networkx_nodes(
G,
pos,
nodelist=list(p.keys()),
node_size=80,
node_color=list(p.values()),
cmap=plt.cm.Reds_r,
)
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
plt.axis("off")
st.pyplot(plt)
# Display Drawing: Random Geometric Graph if selected
if sidebar_option == "Drawing: Random Geometric Graph":
display_random_geometric_graph()
# Function to display Drawing: Rainbow Coloring
def display_rainbow_coloring():
st.title("Drawing: Rainbow Coloring")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Rainbow Coloring with default parameters
node_dist_to_color = {
1: "tab:red",
2: "tab:orange",
3: "tab:olive",
4: "tab:green",
5: "tab:blue",
6: "tab:purple",
}
nnodes = 13
G = nx.complete_graph(nnodes)
n = (nnodes - 1) // 2
ndist_iter = list(range(1, n + 1))
ndist_iter += ndist_iter[::-1]
def cycle(nlist, n):
return nlist[-n:] + nlist[:-n]
nodes = list(G.nodes())
for i, nd in enumerate(ndist_iter):
for u, v in zip(nodes, cycle(nodes, i + 1)):
G[u][v]["color"] = node_dist_to_color[nd]
pos = nx.circular_layout(G)
# Create a figure with 1:1 aspect ratio to preserve the circle.
fig, ax = plt.subplots(figsize=(8, 8))
node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0}
nx.draw_networkx_nodes(G, pos, **node_opts)
nx.draw_networkx_labels(G, pos, font_size=14)
# Extract color from edge data
edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)]
nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors)
ax.set_axis_off()
fig.tight_layout()
st.pyplot(plt)
elif option == "Create your own":
nnodes = st.number_input("Number of nodes (max=14):", min_value=2, max_value=50, value=13)
# Allow users to create their own color map
red = st.color_picker("Select a color for Red (1)", "#ff0000")
orange = st.color_picker("Select a color for Orange (2)", "#ff7f00")
olive = st.color_picker("Select a color for Olive (3)", "#808000")
green = st.color_picker("Select a color for Green (4)", "#008000")
blue = st.color_picker("Select a color for Blue (5)", "#0000ff")
purple = st.color_picker("Select a color for Purple (6)", "#800080")
node_dist_to_color = {
1: red,
2: orange,
3: olive,
4: green,
5: blue,
6: purple,
}
if st.button("Generate Graph"):
G = nx.complete_graph(nnodes)
n = (nnodes - 1) // 2
ndist_iter = list(range(1, n + 1))
ndist_iter += ndist_iter[::-1]
def cycle(nlist, n):
return nlist[-n:] + nlist[:-n]
nodes = list(G.nodes())
for i, nd in enumerate(ndist_iter):
for u, v in zip(nodes, cycle(nodes, i + 1)):
G[u][v]["color"] = node_dist_to_color[nd]
pos = nx.circular_layout(G)
# Create a figure with 1:1 aspect ratio to preserve the circle.
fig, ax = plt.subplots(figsize=(8, 8))
node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0}
nx.draw_networkx_nodes(G, pos, **node_opts)
nx.draw_networkx_labels(G, pos, font_size=14)
# Extract color from edge data
edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)]
nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors)
ax.set_axis_off()
fig.tight_layout()
st.pyplot(plt)
# Display Drawing: Rainbow Coloring if selected
if sidebar_option == "Drawing: Rainbow Coloring":
display_rainbow_coloring()
# Function to display Drawing: Node Colormap
def display_node_colormap():
st.title("Drawing: Node Colormap")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.cycle_graph(24)
pos = nx.circular_layout(G)
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
st.pyplot(plt)
elif option == "Create your own":
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=100, value=24)
color_map = st.selectbox("Select a colormap:", plt.colormaps(), index=plt.colormaps().index('Blues'))
if st.button("Generate Graph"):
# Create cycle graph with custom number of nodes
G_custom = nx.cycle_graph(num_nodes)
pos = nx.circular_layout(G_custom)
nx.draw(G_custom, pos, node_color=range(num_nodes), node_size=800, cmap=plt.get_cmap(color_map))
st.pyplot(plt)
# Display Drawing: Node Colormap if selected
if sidebar_option == "Drawing: Node Colormap":
display_node_colormap()
# Function to create a multipartite graph
def multilayered_graph(*subset_sizes):
G = nx.Graph()
layers = len(subset_sizes)
node_id = 0
# Create nodes for each subset and add edges between nodes in adjacent layers
for i, size in enumerate(subset_sizes):
for j in range(size):
G.add_node(node_id, layer=i) # Assign a layer attribute
node_id += 1
# Add edges between nodes in adjacent layers
node_ids = list(G.nodes())
for i in range(layers - 1):
layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i]
next_layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i + 1]
for node in layer_nodes:
for next_node in next_layer_nodes:
G.add_edge(node, next_node)
return G
# Function to display Multipartite Layout
def display_multipartite_layout():
st.title("Drawing: Multipartite Layout")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3]
subset_color = [
"gold", "violet", "violet", "violet", "violet",
"limegreen", "limegreen", "darkorange"
]
# Generate and plot multipartite graph
G = multilayered_graph(*subset_sizes)
color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)]
pos = nx.multipartite_layout(G, subset_key="layer")
plt.figure(figsize=(8, 8))
nx.draw(G, pos, node_color=color, with_labels=False)
plt.axis("equal")
st.pyplot(plt)
elif option == "Create your own":
# Let the user input the subset sizes and colors
st.write("Enter the subset sizes and colors to create your own multipartite graph.")
subset_sizes_input = st.text_area("Enter subset sizes (comma-separated, e.g., 5,5,4,3):", value="5,5,4,3,2,4,4,3")
subset_sizes = list(map(int, subset_sizes_input.split(',')))
subset_colors_input = st.text_area("Enter subset colors (comma-separated, e.g., gold,violet,green):", value="gold,violet,violet,violet,violet,limegreen,limegreen,darkorange")
subset_colors = subset_colors_input.split(',')
# Check if the number of colors matches the number of subsets
if len(subset_sizes) != len(subset_colors):
st.error("The number of colors should match the number of subsets.")
else:
# Add a button to generate the graph
if st.button("Generate Graph"):
# Generate and plot multipartite graph
G = multilayered_graph(*subset_sizes)
color = [subset_colors[data["layer"]] for v, data in G.nodes(data=True)]
pos = nx.multipartite_layout(G, subset_key="layer")
plt.figure(figsize=(8, 8))
nx.draw(G, pos, node_color=color, with_labels=False)
plt.axis("equal")
st.pyplot(plt)
# Display Drawing: Multipartite Layout if selected
if sidebar_option == "Drawing: Multipartite Layout":
display_multipartite_layout()
# Function to display Labels and Colors
def display_labels_and_colors():
st.title("Drawing: Labels And Colors")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Create a cubical graph
G = nx.cubical_graph()
pos = nx.spring_layout(G, seed=3113794652) # positions for all nodes
# Draw nodes with different colors
options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9}
nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options)
nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options)
# Draw edges
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
width=8,
alpha=0.5,
edge_color="tab:red",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
width=8,
alpha=0.5,
edge_color="tab:blue",
)
# Add labels for nodes
labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"}
nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke")
plt.tight_layout()
plt.axis("off")
st.pyplot(plt)
elif option == "Create your own":
# Let the user input the nodes and edges of the graph
st.write("Enter the nodes and edges to create your own labeled graph.")
nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d")
node_labels = nodes.split(',')
edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d")
edge_list = [tuple(edge.split('-')) for edge in edges.split(',')]
# Let user choose colors for nodes and edges
node_color = st.color_picker("Pick a color for nodes:", "#FF6347")
edge_color = st.color_picker("Pick a color for edges:", "#4682B4")
# Add a button to generate the graph
if st.button("Generate Graph"):
# Generate graph based on user input
G_custom = nx.Graph()
G_custom.add_nodes_from(node_labels)
G_custom.add_edges_from(edge_list)
# Generate layout for the nodes
pos_custom = nx.spring_layout(G_custom)
# Draw the graph
nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9)
nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7)
# Create custom labels
custom_labels = {node: f"${node}$" for node in node_labels}
nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke")
plt.tight_layout()
plt.axis("off")
st.pyplot(plt)
# Display Drawing: Labels And Colors if selected
if sidebar_option == "Drawing: Labels And Colors":
display_labels_and_colors()
# Function to display Drawing: House With Colors
def display_house_with_colors():
st.title("Drawing: House With Colors")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Create the house graph and explicitly set positions
G = nx.house_graph()
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
# Plot nodes with different properties for the "wall" and "roof" nodes
nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue")
nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange")
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
# Customize axes
ax = plt.gca()
ax.margins(0.11)
plt.tight_layout()
plt.axis("off")
st.pyplot(plt)
elif option == "Create your own":
# Allow the user to specify node positions and colors
st.write("Specify positions for the house graph nodes.")
positions = {}
for i in range(5):
x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
positions[i] = (x, y)
# Allow the user to specify colors for wall and roof nodes
wall_color = st.color_picker("Wall color:", "#0000FF")
roof_color = st.color_picker("Roof color:", "#FFA500")
if st.button("Generate"):
# Create the house graph with the specified positions
G_custom = nx.house_graph()
# Plot nodes with user-defined properties for wall and roof nodes
nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color)
nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color)
nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6)
# Customize axes
ax = plt.gca()
ax.margins(0.11)
plt.tight_layout()
plt.axis("off")
st.pyplot(plt)
# Display Drawing: House With Colors if selected
if sidebar_option == "Drawing: House With Colors":
display_house_with_colors()
# Function to display Four Grids visualization for Drawing: Four Grids
def display_four_grids():
st.title("Drawing: Four Grids")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Generate a 4x4 grid graph
G = nx.grid_2d_graph(4, 4) # 4x4 grid
pos = nx.spring_layout(G, iterations=100, seed=39775)
# Create a 2x2 subplot
fig, all_axes = plt.subplots(2, 2)
ax = all_axes.flat
# Draw graphs in 4 different styles
nx.draw(G, pos, ax=ax[0], font_size=8)
nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False)
nx.draw(
G,
pos,
ax=ax[2],
node_color="tab:green",
edgecolors="tab:gray", # Node surface color
edge_color="tab:gray", # Color of graph edges
node_size=250,
with_labels=False,
width=6,
)
H = G.to_directed()
nx.draw(
H,
pos,
ax=ax[3],
node_color="tab:orange",
node_size=20,
with_labels=False,
arrowsize=10,
width=2,
)
# Set margins for the axes so that nodes aren't clipped
for a in ax:
a.margins(0.10)
fig.tight_layout()
st.pyplot(fig)
elif option == "Create your own":
# Allow the user to customize the grid dimensions
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4)
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4)
if st.button("Generate"):
# Generate a custom grid graph
G_custom = nx.grid_2d_graph(rows, cols) # Create the grid graph
pos = nx.spring_layout(G_custom, iterations=100, seed=39775)
# Create a 2x2 subplot
fig, all_axes = plt.subplots(2, 2)
ax = all_axes.flat
# Draw graphs in 4 different styles
nx.draw(G_custom, pos, ax=ax[0], font_size=8)
nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False)
nx.draw(
G_custom,
pos,
ax=ax[2],
node_color="tab:green",
edgecolors="tab:gray", # Node surface color
edge_color="tab:gray", # Color of graph edges
node_size=250,
with_labels=False,
width=6,
)
H = G_custom.to_directed()
nx.draw(
H,
pos,
ax=ax[3],
node_color="tab:orange",
node_size=20,
with_labels=False,
arrowsize=10,
width=2,
)
# Set margins for the axes so that nodes aren't clipped
for a in ax:
a.margins(0.10)
fig.tight_layout()
st.pyplot(fig)
# Display Drawing: Four Grids if selected
if sidebar_option == "Drawing: Four Grids":
display_four_grids()
# Function to display Eigenvalue analysis for Drawing: Eigenvalues
def display_eigenvalue_analysis():
st.title("Drawing: Eigenvalues")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Generate random graph with 1000 nodes and 5000 edges
n = 1000
m = 5000
G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility
# Calculate the normalized Laplacian matrix
L = nx.normalized_laplacian_matrix(G)
eigenvalues = np.linalg.eigvals(L.toarray())
# Print largest and smallest eigenvalues
st.write(f"Largest eigenvalue: {max(eigenvalues)}")
st.write(f"Smallest eigenvalue: {min(eigenvalues)}")
# Display the histogram of eigenvalues
st.write("### Eigenvalue Histogram")
plt.hist(eigenvalues, bins=100)
plt.xlim(0, 2) # Eigenvalues between 0 and 2
st.pyplot(plt)
elif option == "Create your own":
# Allow the user to customize the number of nodes and edges
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500)
if st.button("Generate"):
# Generate a random graph with the custom number of nodes and edges
G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040) # Seed for reproducibility
# Calculate the normalized Laplacian matrix
L = nx.normalized_laplacian_matrix(G_custom)
eigenvalues = np.linalg.eigvals(L.toarray())
# Print largest and smallest eigenvalues
st.write(f"Largest eigenvalue: {max(eigenvalues)}")
st.write(f"Smallest eigenvalue: {min(eigenvalues)}")
# Display the histogram of eigenvalues
st.write("### Eigenvalue Histogram")
plt.hist(eigenvalues, bins=100)
plt.xlim(0, 2) # Eigenvalues between 0 and 2
st.pyplot(plt)
# Display Drawing: Eigenvalues if selected
if sidebar_option == "Drawing: Eigenvalues":
display_eigenvalue_analysis()
# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
pathlengths = []
st.write("### Source vertex {target:length, }")
for v in G.nodes():
spl = dict(nx.single_source_shortest_path_length(G, v))
st.write(f"Vertex {v}: {spl}")
for p in spl:
pathlengths.append(spl[p])
avg_path_length = sum(pathlengths) / len(pathlengths)
st.write(f"### Average shortest path length: {avg_path_length}")
dist = {}
for p in pathlengths:
dist[p] = dist.get(p, 0) + 1
st.write("### Length #paths")
for d in sorted(dist.keys()):
st.write(f"Length {d}: {dist[d]} paths")
st.write("### Properties")
st.write(f"Radius: {nx.radius(G)}")
st.write(f"Diameter: {nx.diameter(G)}")
st.write(f"Eccentricity: {nx.eccentricity(G)}")
st.write(f"Center: {nx.center(G)}")
st.write(f"Periphery: {nx.periphery(G)}")
st.write(f"Density: {nx.density(G)}")
# Visualize the graph
st.write("### Graph Visualization")
pos = nx.spring_layout(G, seed=3068) # Seed layout for reproducibility
draw_graph(G, pos)
# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
st.write("### Adjacency List:")
for line in nx.generate_adjlist(G):
st.write(line)
# Write the graph's edge list to a file
st.write("### Writing Edge List to 'grid.edgelist' file:")
nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # Save edge list
st.write("Edge list written to 'grid.edgelist'")
# Read the graph from the edge list
st.write("### Reading Edge List from 'grid.edgelist' file:")
H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
st.write("Edge list read into graph H")
# Visualize the graph
st.write("### Graph Visualization:")
pos = nx.spring_layout(H, seed=200) # Seed for reproducibility
draw_graph(H, pos)
# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
options = {
"font_size": 36,
"node_size": 3000,
"node_color": "white",
"edgecolors": "black",
"linewidths": 5,
"width": 5,
}
# Draw the network
nx.draw_networkx(G, pos, **options)
# Set margins for the axes so that nodes aren't clipped
ax = plt.gca()
ax.margins(0.20)
plt.axis("off")
st.pyplot(plt)
# Function to display Simple Directed Graphs for Basic: Simple graph Directed
def display_simple_directed_graph(G, pos=None):
options = {
"node_size": 500,
"node_color": "lightblue",
"arrowsize": 20,
"width": 2,
"edge_color": "gray",
}
# Draw the directed graph with the given positions and options
nx.draw_networkx(G, pos, **options)
# Set margins for the axes so that nodes aren't clipped
ax = plt.gca()
ax.margins(0.20)
plt.axis("off")
st.pyplot(plt)
# Function to display Custom Node Position Graphs for Drawing: Custom Node Position
def display_custom_node_position():
st.title("Drawing: Custom Node Position")
# Default example graph (path graph with custom node position)
G = nx.path_graph(20)
center_node = 5
edge_nodes = set(G) - {center_node}
# Ensure the nodes around the circle are evenly distributed
pos = nx.circular_layout(G.subgraph(edge_nodes))
pos[center_node] = np.array([0, 0]) # Manually specify node position
# Draw the graph
draw_graph(G, pos)
# Function to display Cluster Layout for Drawing: Cluster Layout
def display_cluster_layout():
st.title("Drawing: Cluster Layout")
G = nx.davis_southern_women_graph() # Example graph
communities = nx.community.greedy_modularity_communities(G)
# Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor
supergraph = nx.cycle_graph(len(communities))
superpos = nx.spring_layout(G, scale=50, seed=429)
# Use the "supernode" positions as the center of each node cluster
centers = list(superpos.values())
pos = {}
for center, comm in zip(centers, communities):
pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))
# Nodes colored by cluster
for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
nx.draw_networkx_edges(G, pos=pos)
plt.tight_layout()
st.pyplot(plt)
# Function to display Degree Analysis for Drawing: Degree Analysis
def display_degree_analysis():
st.title("Drawing: Degree Analysis")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.gnp_random_graph(100, 0.02, seed=10374196)
degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
dmax = max(degree_sequence)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
# Create a gridspec for adding subplots of different sizes
axgrid = fig.add_gridspec(5, 4)
ax0 = fig.add_subplot(axgrid[0:3, :])
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
pos = nx.spring_layout(Gcc, seed=10396953)
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
ax0.set_title("Connected components of G")
ax0.set_axis_off()
ax1 = fig.add_subplot(axgrid[3:, :2])
ax1.plot(degree_sequence, "b-", marker="o")
ax1.set_title("Degree Rank Plot")
ax1.set_ylabel("Degree")
ax1.set_xlabel("Rank")
ax2 = fig.add_subplot(axgrid[3:, 2:])
ax2.bar(*np.unique(degree_sequence, return_counts=True))
ax2.set_title("Degree histogram")
ax2.set_xlabel("Degree")
ax2.set_ylabel("# of Nodes")
fig.tight_layout()
st.pyplot(fig)
elif option == "Create your own":
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100)
p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02)
if st.button("Generate"):
if n_nodes >= 2:
G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196)
degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True)
dmax = max(degree_sequence)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
# Create a gridspec for adding subplots of different sizes
axgrid = fig.add_gridspec(5, 4)
ax0 = fig.add_subplot(axgrid[0:3, :])
Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0])
pos = nx.spring_layout(Gcc, seed=10396953)
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
ax0.set_title("Connected components of G")
ax0.set_axis_off()
ax1 = fig.add_subplot(axgrid[3:, :2])
ax1.plot(degree_sequence, "b-", marker="o")
ax1.set_title("Degree Rank Plot")
ax1.set_ylabel("Degree")
ax1.set_xlabel("Rank")
ax2 = fig.add_subplot(axgrid[3:, 2:])
ax2.bar(*np.unique(degree_sequence, return_counts=True))
ax2.set_title("Degree histogram")
ax2.set_xlabel("Degree")
ax2.set_ylabel("# of Nodes")
fig.tight_layout()
st.pyplot(fig)
# Function to display Ego Graph for Drawing: Ego Graph
def display_ego_graph():
st.title("Drawing: Ego Graph")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Create a BA model graph - use seed for reproducibility
n = 1000
m = 2
seed = 20532
G = nx.barabasi_albert_graph(n, m, seed=seed)
# Find node with largest degree
node_and_degree = G.degree()
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]
# Create ego graph of main hub
hub_ego = nx.ego_graph(G, largest_hub)
# Draw graph
pos = nx.spring_layout(hub_ego, seed=seed) # Seed layout for reproducibility
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)
# Draw ego as large and red
options = {"node_size": 300, "node_color": "r"}
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
plt.tight_layout()
st.pyplot(plt)
elif option == "Create your own":
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2)
if st.button("Generate"):
if n_nodes >= 2:
G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532)
# Find node with largest degree
node_and_degree = G_custom.degree()
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]
# Create ego graph of main hub
hub_ego = nx.ego_graph(G_custom, largest_hub)
# Draw graph
pos = nx.spring_layout(hub_ego, seed=20532) # Seed layout for reproducibility
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)
# Draw ego as large and red
options = {"node_size": 300, "node_color": "r"}
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
plt.tight_layout()
st.pyplot(plt)
# Display Drawing: Ego Graph if selected
if sidebar_option == "Drawing: Ego Graph":
display_ego_graph()
# Display Basic: Properties if selected
elif sidebar_option == "Basic: Properties":
st.title("Basic: Properties")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.lollipop_graph(4, 6)
display_graph_properties(G)
elif option == "Create your own":
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)
if st.button("Generate"):
if num_nodes >= 2 and num_edges >= 1:
G_custom = nx.lollipop_graph(num_nodes, num_edges)
display_graph_properties(G_custom)
# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
st.title("Basic: Read and write graphs")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.grid_2d_graph(5, 5)
display_read_write_graph(G)
elif option == "Create your own":
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)
if st.button("Generate"):
if rows >= 2 and cols >= 2:
G_custom = nx.grid_2d_graph(rows, cols)
display_read_write_graph(G_custom)
# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
st.title("Basic: Simple graph")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.Graph()
G.add_edge(1, 2)
G.add_edge(1, 3)
G.add_edge(1, 5)
G.add_edge(2, 3)
G.add_edge(3, 4)
G.add_edge(4, 5)
pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
display_simple_graph(G, pos)
elif option == "Create your own":
edges = []
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
if edge_input:
edge_list = edge_input.split("\n")
for edge in edge_list:
u, v = map(int, edge.split(","))
edges.append((u, v))
if st.button("Generate"):
G_custom = nx.Graph()
G_custom.add_edges_from(edges)
pos = nx.spring_layout(G_custom, seed=42)
display_simple_graph(G_custom, pos)
# Display Basic: Simple Directed Graph if selected
elif sidebar_option == "Basic: Simple graph Directed":
st.title("Basic: Simple graph Directed")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])
left_nodes = [0, 1, 2]
middle_nodes = [3, 4]
right_nodes = [5, 6]
pos = {n: (0, i) for i, n in enumerate(left_nodes)}
pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})
display_simple_directed_graph(G, pos)
elif option == "Create your own":
edges = []
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
if edge_input:
edge_list = edge_input.split("\n")
for edge in edge_list:
u, v = map(int, edge.split(","))
edges.append((u, v))
if st.button("Generate"):
G_custom = nx.DiGraph()
G_custom.add_edges_from(edges)
pos = nx.spring_layout(G_custom, seed=42)
display_simple_directed_graph(G_custom, pos)
# Display Drawing: Custom Node Position if selected
elif sidebar_option == "Drawing: Custom Node Position":
display_custom_node_position()
# Display Drawing: Cluster Layout if selected
elif sidebar_option == "Drawing: Cluster Layout":
display_cluster_layout()
# Display Drawing: Degree Analysis if selected
elif sidebar_option == "Drawing: Degree Analysis":
display_degree_analysis()
|