File size: 88,528 Bytes
078bcfb
34c2aef
2b5132f
8cbf79a
 
92a2cc5
cad7624
3ec7372
 
 
f38a7f6
e585fd7
38f979d
5b842f2
 
 
 
f2eec95
e5dabf3
13be39a
72f2a80
ec08d04
92a2cc5
e3c5c63
6bb529c
580e1c2
0586bdc
b79f9b1
9773c4d
162cef9
d429347
652c01a
9670233
d231367
9670233
 
 
 
 
 
 
 
 
462657d
5b842f2
 
 
d231367
9670233
13be39a
 
 
9718355
 
 
0484895
b78c735
 
 
 
 
13be39a
 
 
2bf08f8
 
 
 
 
 
01b3928
 
 
1997d9e
01b3928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13be39a
 
a6d730e
 
 
 
 
 
13be39a
a6d730e
 
13be39a
652c01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e88b92
 
 
 
 
 
 
652c01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c04d6
8038dda
8cbf79a
 
 
8038dda
 
0325983
 
 
 
 
3b1b0ab
0325983
3b1b0ab
 
 
 
 
0325983
3b1b0ab
 
 
 
 
 
 
 
 
0325983
 
 
7155419
0325983
 
 
 
 
 
 
 
 
 
 
 
3b1b0ab
b67c5a2
3b1b0ab
0325983
 
 
 
 
 
3b1b0ab
0325983
 
 
 
712297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3aaf3
 
 
712297d
 
0325983
 
 
 
 
 
 
 
 
162cef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331617f
162cef9
 
 
 
 
 
 
331617f
162cef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e7238b
162cef9
8e7238b
 
162cef9
 
331617f
 
 
 
 
 
 
 
 
 
 
 
 
 
8e7238b
331617f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162cef9
 
 
 
 
e3de282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c42dc
 
e3de282
f3c42dc
 
 
 
 
 
 
e3de282
f3c42dc
 
e3de282
f3c42dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3de282
 
 
 
 
f4f6fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67fc410
f4f6fdb
67fc410
 
 
 
f4f6fdb
67fc410
 
 
 
f4f6fdb
67fc410
 
 
 
 
 
f4f6fdb
 
 
 
 
0bcf063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f89284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bcf063
 
 
 
 
 
 
 
 
 
2f89284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bcf063
 
 
 
 
9773c4d
 
 
 
 
 
 
 
 
 
 
d639fba
9773c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d639fba
 
 
 
 
9773c4d
d639fba
 
 
 
 
9773c4d
 
d639fba
 
 
9773c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec7372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63e930
 
22ca56a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337b460
22ca56a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337b460
 
22ca56a
337b460
 
 
 
 
 
 
 
22ca56a
337b460
 
 
22ca56a
337b460
 
22ca56a
337b460
 
 
22ca56a
337b460
 
 
 
 
 
 
 
 
 
 
 
22ca56a
 
 
c63e930
22ca56a
 
 
 
337b460
22ca56a
 
 
 
 
 
 
3ec7372
b79f9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5478e5a
 
 
 
 
97613a3
5478e5a
 
 
 
 
 
97613a3
5478e5a
00a8318
 
 
 
 
5478e5a
 
97613a3
00a8318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79f9b1
 
 
 
 
0cb1c8f
 
e316c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb1c8f
 
e316c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459eb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e316c4c
 
 
 
 
267a5b8
49f6468
 
 
 
 
 
1e8e554
 
49f6468
 
 
 
b2c6bfa
1e8e554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c6bfa
1e8e554
b2c6bfa
49f6468
 
 
1e8e554
49f6468
 
1e8e554
 
79f8574
49f6468
1e8e554
6d7260d
1e8e554
 
 
6d7260d
 
1e8e554
79f8574
49f6468
79f8574
 
 
1f8cc08
1e8e554
 
6d7260d
1e8e554
 
79f8574
 
49f6468
1e8e554
 
79f8574
1e8e554
b2c6bfa
1e8e554
b2c6bfa
79f8574
49f6468
 
 
 
 
0586bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60586bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de8ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580e1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f414108
580e1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb529c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed267a
4a12384
 
2ed267a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a12384
 
2ed267a
4a12384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed267a
 
4a12384
2ed267a
 
 
 
 
 
 
 
 
 
 
 
4a12384
 
 
 
 
2ed267a
50d794a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed267a
 
 
 
 
 
50d794a
2ed267a
 
 
 
 
 
 
 
 
 
 
 
 
 
50d794a
 
 
 
 
e3c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad5dd3
 
 
e3c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3da41
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea80b0
d04c5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
8cbf79a
 
 
 
 
 
 
 
 
 
 
deebd1e
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
f2eec95
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
 
 
 
bfa97dc
 
ec08d04
bfa97dc
 
 
ec08d04
bfa97dc
 
 
 
 
ec08d04
 
bfa97dc
 
 
ec08d04
bfa97dc
 
cf159b9
 
 
 
 
 
 
 
 
bfa97dc
cf159b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
92a2cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
92a2cc5
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
8cbf79a
e39c5f4
8cbf79a
 
 
e39c5f4
8cbf79a
 
 
f2eec95
8cbf79a
 
 
 
 
 
 
e39c5f4
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a61687
8cbf79a
 
e39c5f4
8cbf79a
5a61687
8cbf79a
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
e95128d
8cbf79a
 
 
 
 
 
 
 
e95128d
8cbf79a
 
 
 
 
57e492d
8cbf79a
72f2a80
deebd1e
ec08d04
 
 
 
cf159b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
import streamlit as st #
import itertools as it
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from operator import itemgetter
import math  # Import the math module
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
from streamlit.components.v1 import html
import matplotlib.colors as mpl
from PIL import Image

st.sidebar.markdown("""
        ### Courtesy: [NetworkX](https://networkx.org/documentation/stable/index.html)
    """)

# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select Tutorial", 
                                 ["Introductory Tutorial", "Basic: Properties", 
                                  "Basic: Read and write graphs", "Basic: Simple graph", 
                                  "Basic: Simple graph Directed", "Drawing: Custom Node Position",
                                  "Drawing: Cluster Layout", "Drawing: Degree Analysis",
                                  "Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids",
                                  "Drawing: House With Colors", "Drawing: Labels And Colors", 
                                  "Drawing: Multipartite Layout", "Drawing: Node Colormap",
                                  "Drawing: Rainbow Coloring", "Drawing: Random Geometric Graph","Drawing: Self-loops",
                                  "Drawing: Simple Path", "Drawing: Spectral Embedding", "Drawing: Traveling Salesman Problem",
                                  "Drawing: Weighted Graph", "3D Drawing: Animations of 3D Rotation", "3D Drawing: Basic Matplotlib",
                                  "Graph: DAG - Topological Layout", "Graph: Erdos Renyi", "Graph: Karate Club", "Graph: Minimum Spanning Tree",
                                  "Graph: Triads", "Algorithms: Cycle Detection", "Algorithms: Greedy Coloring"])

# Add Contact information in the sidebar
st.sidebar.markdown("""
        ## Contact
    
        For any questions or issues, please contact:
    
        - **Email**: [[email protected]](mailto:[email protected])
        - **GitHub**: [Click here to access the Github Profile](https://github.com/shukdevtroy)
        - **WhatsApp**: [Click here to chat](https://wa.me/+8801719296601)
        - **HuggingFace Profile**: [Click here to access the HuggingFace Profile](https://huggingface.co/shukdevdatta123)
    """)

# st.sidebar.markdown("""
#         ### Courtesy: [NetworkX](https://networkx.org/documentation/stable/index.html)
#     """)
    

# Display content when "Select an option" is chosen
if sidebar_option == "Introductory Tutorial":
    st.title("Graph Visualization and Analysis Options")

    # Display a logo or icon
    image = Image.open("1.png")  # Path to your image file
    st.image(image, width=400)  # You can adjust the width as needed

    # Button to navigate to the external voice chat link
    if st.button("Go to Sorting Simulator"):
        st.write("Redirecting to Sorting Simulator...")  # You can customize this message
        st.markdown(f'<a href="https://shukdevdatta123-sorting-visualization.hf.space" target="_blank">Go to Sorting Simulator</a>', unsafe_allow_html=True)
    
    # Add content descriptions
    descriptions = [
        ("Basic: Properties", "This option provides insights into the foundational aspects of a graph. You can count nodes (individual points) and edges (connections between nodes). For example, in a graph representing a social network, the nodes could be people, and the edges could represent friendships. The degree distribution tells how many connections each node has, helping identify influential nodes."),
        ("Basic: Read and Write Graphs", "This feature lets you load graphs from files or save your current graph for later use. For instance, if you have a graph stored in a GML file, you can load it and analyze it in your program. Similarly, you can save graphs as adjacency lists or edge lists for portability."),
        ("Basic: Simple Graph", "This generates simple, undirected graphs where edges don’t have a direction. For example, a graph showing roads between cities where travel is possible in both directions. You can create specific structures like a star graph (one central hub) or a cycle graph (nodes connected in a loop)."),
        ("Basic: Simple Graph Directed", "Directed graphs have edges with a direction. They are useful for workflows or dependencies. For example, in a project plan, a directed graph might show tasks with arrows indicating the order in which they need to be completed."),
        ("Drawing: Custom Node Position", "This feature allows you to manually set where each node appears on the graph. For example, in a family tree, you might want to position nodes to reflect generational hierarchies rather than relying on an automatic layout."),
        ("Drawing: Cluster Layout", "Nodes are grouped into clusters based on their connections. For instance, in a network of social media users, this could highlight friend groups. Each group would appear as a tight cluster in the visualization."),
        ("Drawing: Degree Analysis", "This visualizes the connections (or degree) of nodes. For example, in a transportation network, hubs like airports can be highlighted because they have the highest degree, representing more connections to other nodes."),
        ("Drawing: Ego Graph", "Focuses on a single node and its immediate connections. For instance, if you want to see all direct friends of a specific person on a social network, this feature isolates that person and their relationships."),
        ("Drawing: Eigenvalues", "Eigenvalues come from the graph’s Laplacian matrix and reveal structural properties. For example, in community detection, eigenvalues can help identify clusters or measure the connectivity of a graph."),
        ("Drawing: House With Colors", "Displays a basic house graph, a simple structure that resembles a house. For example, you could use it for teaching graph theory basics, with color-coded nodes and edges representing different parts of the structure."),
        ("Drawing: Labels and Colors", "This lets you customize the appearance of nodes and edges by adding labels or colors. For example, in a roadmap, cities (nodes) can be color-coded by region, and roads (edges) can have labels for distance."),
        ("Drawing: Multipartite Layout", "Creates multipartite graphs where nodes are divided into layers, and edges only connect nodes from different layers. For instance, in a university, one layer could represent professors and another students, with edges indicating which professor teaches which student."),
        ("Drawing: Node Colormap", "Applies color gradients to nodes based on their properties, like degree or centrality. For example, nodes in a social network can be shaded to show influence, with darker colors for highly connected individuals."),
        ("Drawing: Rainbow Coloring", "This colorful feature assigns different colors to edges, helping differentiate them. For example, in a circular graph, this can show the relative positions of connections, making it visually appealing."),
        ("Drawing: Random Geometric Graph", "Generates graphs where nodes are connected if they’re within a specific distance. For example, in a wireless sensor network, nodes represent sensors, and edges show connectivity based on signal range."),
        ("Drawing: Self-loops", "Visualizes edges that start and end at the same node. For example, in a citation network, a self-loop could represent a researcher citing their previous work."),
        ("Drawing: Simple Path", "Displays simple linear graphs where nodes connect in a sequence. For example, it could represent a production line where each step depends on the previous one."),
        ("Drawing: Spectral Embedding", "Uses a mathematical technique to arrange nodes in a lower-dimensional space. For example, you can visualize clusters in a high-dimensional dataset in a way that preserves their relationships."),
        ("Drawing: Traveling Salesman Problem", "Visualizes solutions to the Traveling Salesman Problem (TSP), where the goal is to find the shortest route visiting every node once. For example, a delivery route optimization can use this to minimize travel costs."),
        ("Drawing: Weighted Graph", "Shows graphs with weighted edges. For example, in a flight network, edge weights can represent ticket prices or distances, with thicker edges for higher weights."),
        ("3D Drawing: Animations of 3D Rotation", "Generates 3D graphs with rotation animations. For example, you can visualize molecule structures or spatial relationships dynamically."),
        ("3D Drawing: Basic Matplotlib", "Creates 3D graph visualizations using Matplotlib, letting you explore spatial relationships. For example, you could map a city’s buildings in 3D space."),
        ("Graph: DAG - Topological Layout", "Displays Directed Acyclic Graphs (DAGs) in a topological order. For example, it can represent workflows or dependency graphs where tasks need to follow a sequence."),
        ("Graph: Erdos Renyi", "Generates random graphs where edges appear based on a probability. For example, you can model random connections in a network to study statistical properties."),
        ("Graph: Karate Club", "This graph is a classic benchmark in network science, showing relationships in a club. It’s often used for community detection and teaching graph analysis."),
        ("Graph: Minimum Spanning Tree", "Extracts a tree from the graph connecting all nodes with the minimum total edge weight. For example, this is used in network design to minimize cable or pipeline costs."),
        ("Graph: Triads", "Analyzes three-node structures (triads). For example, in social networks, closed triads (triangles) indicate strong relationships among three people."),
        ("Algorithms: Cycle Detection", "Detects cycles in graphs, useful for spotting feedback loops or circular dependencies. For example, in a dependency graph, it can help identify tasks that reference each other."),
        ("Algorithms: Greedy Coloring", "Colors nodes so that no two adjacent nodes share the same color. For example, in exam scheduling, this ensures no two overlapping exams are assigned the same room.")
    ]
    
    # for title, desc in descriptions:
    #     st.subheader(title)  # Removed the ### here
    #     st.write(desc)
    #     st.write("---")

    # Loop through the descriptions and create expanders
    for title, desc in descriptions:
        with st.expander(title):
            st.write(desc)

def plot_greedy_coloring(graph):
    # Apply greedy coloring
    graph_coloring = nx.greedy_color(graph)
    unique_colors = set(graph_coloring.values())

    # Assign colors to nodes based on the greedy coloring
    graph_color_to_mpl_color = dict(zip(unique_colors, mpl.TABLEAU_COLORS))
    node_colors = [graph_color_to_mpl_color[graph_coloring[n]] for n in graph.nodes()]

    # Layout of the graph
    pos = nx.spring_layout(graph, seed=14)

    # Draw the graph
    nx.draw(
        graph,
        pos,
        with_labels=True,
        node_size=500,
        node_color=node_colors,
        edge_color="grey",
        font_size=12,
        font_color="#333333",
        width=2,
    )

    plt.title("Greedy Coloring of Graph")
    st.pyplot(plt)

def algorithms_greedy_coloring():
    st.title("Algorithms: Greedy Coloring")

    # Option to choose between creating your own or using the default example
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="The default example shows a predefined graph, or you can create your own."
    )

    if graph_mode == "Default Example":
        # Create a predefined graph (Dodecahedral graph) for the greedy coloring example
        G = nx.dodecahedral_graph()
        st.write("Default Graph: Dodecahedral Graph with Greedy Coloring.")
        plot_greedy_coloring(G)

    elif graph_mode == "Create Your Own":
        st.write("### Create Your Own Graph")

        # Input for creating a custom graph
        nodes_input = st.text_area("Enter nodes (e.g., 1, 2, 3, 4):")
        edges_input = st.text_area("Enter edges (e.g., (1, 2), (2, 3), (3, 4)):").strip()

        if st.button("Generate Graph"):
            if nodes_input and edges_input:
                try:
                    # Clean and parse the input for nodes (strip spaces, remove empty strings)
                    nodes = [node.strip() for node in nodes_input.split(",") if node.strip()]
                    nodes = list(map(int, nodes))

                    # Clean and parse the input for edges (strip spaces and remove empty strings)
                    edges = [edge.strip() for edge in edges_input.split("),") if edge.strip()]
                    edges = [tuple(map(int, edge.strip("()").split(","))) for edge in edges]

                    G = nx.Graph()
                    G.add_nodes_from(nodes)
                    G.add_edges_from(edges)

                    st.write("Custom Graph:", G.edges())
                    plot_greedy_coloring(G)

                except Exception as e:
                    st.error(f"Error creating the graph: {e}")
            else:
                st.error("Please enter valid nodes and edges.")

if sidebar_option == "Algorithms: Greedy Coloring":
    algorithms_greedy_coloring()

# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization"):
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

def plot_cycle_detection(graph):
    # Draw the graph
    pos = nx.spring_layout(graph, seed=8020)
    nx.draw(graph, pos, with_labels=True, node_size=2000, node_color="lightblue")

    # Find all cycles in the directed graph
    try:
        cycles = list(nx.simple_cycles(graph))
        if cycles:
            st.write("Cycles Detected:")
            for cycle in cycles:
                st.write(cycle)

            # Highlight each cycle in red
            for cycle in cycles:
                edges_in_cycle = [(cycle[i], cycle[i + 1] if i + 1 < len(cycle) else cycle[0]) for i in range(len(cycle))]
                nx.draw_networkx_edges(graph, pos, edgelist=edges_in_cycle, edge_color="r", width=2)
        else:
            st.write("No cycles detected")

    except Exception as e:
        st.error(f"Error detecting cycles: {e}")

    # Display the graph
    plt.title("Cycle Detection in Directed Graph")
    st.pyplot(plt)

def algorithms_cycle_detection():
    st.title("Algorithms: Cycle Detection")

    # Option to choose between creating your own or using the default example
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="The default example shows a predefined graph, or you can create your own."
    )

    if graph_mode == "Default Example":
        # Create a predefined graph with multiple cycles
        G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 2)])
        st.write("Default Graph: A simple directed graph with multiple cycles.")
        plot_cycle_detection(G)

    elif graph_mode == "Create Your Own":
        st.write("### Create Your Own Graph")

        # Input for creating custom graph
        edges_input = st.text_area("Enter directed edges (e.g., (1, 2), (2, 3), (3, 1), (3, 4)):").strip()

        if st.button("Generate Graph"):
            if edges_input:
                try:
                    edges = []
                    # Ensure correct formatting of the input string
                    edge_strings = edges_input.split("),")
                    for edge_str in edge_strings:
                        edge_str = edge_str.strip()
                        if edge_str:
                            # Handle the case where the edge might be missing a closing parenthesis
                            if edge_str[-1] != ")":
                                edge_str += ")"
                            # Remove the opening and closing parentheses
                            edge_tuple = edge_str.strip("()").split(",")
                            if len(edge_tuple) == 2:
                                try:
                                    # Safely convert to integers and add the edge
                                    edge_tuple = tuple(map(int, edge_tuple))
                                    edges.append(edge_tuple)
                                except ValueError:
                                    st.error(f"Invalid edge format: {edge_str}")
                                    return

                    if edges:
                        # Create the graph
                        G = nx.DiGraph(edges)
                        st.write("Custom Graph:", G.edges())
                        plot_cycle_detection(G)
                    else:
                        st.error("No valid edges provided.")
                except Exception as e:
                    st.error(f"Error creating the graph: {e}")
            else:
                st.error("Please enter valid directed edges.")

# Display the corresponding page based on sidebar option
if sidebar_option == "Algorithms: Cycle Detection":
    algorithms_cycle_detection()

def triads_graph():
    st.title("Graph: Triads")

    # Sidebar selection for Default Example or Custom Triads
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows predefined triads, or you can create your own triads."
    )

    if graph_mode == "Default Example":
        # Define the triads
        triads = {
            "003": [],
            "012": [(1, 2)],
            "102": [(1, 2), (2, 1)],
            "021D": [(3, 1), (3, 2)],
            "021U": [(1, 3), (2, 3)],
            "021C": [(1, 3), (3, 2)],
            "111D": [(1, 2), (2, 1), (3, 1)],
            "111U": [(1, 2), (2, 1), (1, 3)],
            "030T": [(1, 2), (3, 2), (1, 3)],
            "030C": [(1, 3), (3, 2), (2, 1)],
            "201": [(1, 2), (2, 1), (3, 1), (1, 3)],
            "120D": [(1, 2), (2, 1), (3, 1), (3, 2)],
            "120U": [(1, 2), (2, 1), (1, 3), (2, 3)],
            "120C": [(1, 2), (2, 1), (1, 3), (3, 2)],
            "210": [(1, 2), (2, 1), (1, 3), (3, 2), (2, 3)],
            "300": [(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)],
        }

        fig, axes = plt.subplots(4, 4, figsize=(10, 10))

        for (title, triad), ax in zip(triads.items(), axes.flatten()):
            G = nx.DiGraph()
            G.add_nodes_from([1, 2, 3])
            G.add_edges_from(triad)
            nx.draw_networkx(
                G,
                ax=ax,
                with_labels=True,  # Labels the vertices
                node_color=["green"],
                node_size=200,
                arrowsize=20,
                width=2,
                pos=nx.planar_layout(G),
            )
            ax.set_xlim(val * 1.2 for val in ax.get_xlim())
            ax.set_ylim(val * 1.2 for val in ax.get_ylim())
            ax.text(
                0,
                0,
                title,
                fontsize=15,
                fontweight="extra bold",
                horizontalalignment="center",
                bbox={"boxstyle": "square,pad=0.3", "fc": "none"},
            )
        fig.tight_layout()
        st.pyplot(fig)

    elif graph_mode == "Create Your Own":
        st.write("### Create Your Own Triads")

        # Input: Enter triads as a dictionary (e.g., {'triad_name': [(1, 2), (2, 1)]})
        triad_input = st.text_area(
            "Enter your triads in the format: {'triad_name': [(edge1), (edge2), ...]}",
            value="{'003': [], '012': [(1, 2)]}"
        )

        # Generate Button
        if st.button("Generate Graph"):
            # Try to evaluate the input as a dictionary of triads
            try:
                custom_triads = eval(triad_input)
                if isinstance(custom_triads, dict) and all(isinstance(value, list) and all(isinstance(edge, tuple) and len(edge) == 2 for edge in value) for value in custom_triads.values()):
                    fig, axes = plt.subplots(len(custom_triads), 1, figsize=(10, len(custom_triads) * 5))
                    if len(custom_triads) == 1:  # Handle case where only one triad is entered
                        axes = [axes]

                    for (title, triad), ax in zip(custom_triads.items(), axes):
                        G = nx.DiGraph()
                        G.add_nodes_from([1, 2, 3])
                        G.add_edges_from(triad)

                        nx.draw_networkx(
                            G,
                            ax=ax,
                            with_labels=True,  # Labels the vertices
                            node_color=["green"],
                            node_size=200,
                            arrowsize=20,
                            width=2,
                            pos=nx.planar_layout(G),
                        )
                        ax.set_xlim(val * 1.2 for val in ax.get_xlim())
                        ax.set_ylim(val * 1.2 for val in ax.get_ylim())
                        ax.text(
                            0,
                            0,
                            title,
                            fontsize=15,
                            fontweight="extra bold",
                            horizontalalignment="center",
                            bbox={"boxstyle": "square,pad=0.3", "fc": "none"},
                        )
                    fig.tight_layout()
                    st.pyplot(fig)
                else:
                    st.error("Invalid format. Please enter a dictionary of triads in the format {'triad_name': [(edge1), (edge2), ...]}.")
            except Exception as e:
                st.error(f"Error parsing input: {e}")

# Display the corresponding page based on sidebar option
if sidebar_option == "Graph: Triads":
    triads_graph()

def minimum_spanning_tree_graph():
    st.title("Graph: Minimum Spanning Tree")

    # Sidebar selection for Default Example or Custom Graph
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows a graph and its minimum spanning tree, or you can create your own graph."
    )

    if graph_mode == "Default Example":
        # Create a default graph
        G = nx.Graph()
        G.add_edges_from(
            [
                (0, 1, {"weight": 4}),
                (0, 7, {"weight": 8}),
                (1, 7, {"weight": 11}),
                (1, 2, {"weight": 8}),
                (2, 8, {"weight": 2}),
                (2, 5, {"weight": 4}),
                (2, 3, {"weight": 7}),
                (3, 4, {"weight": 9}),
                (3, 5, {"weight": 14}),
                (4, 5, {"weight": 10}),
                (5, 6, {"weight": 2}),
                (6, 8, {"weight": 6}),
                (7, 8, {"weight": 7}),
            ]
        )

        # Find the minimum spanning tree
        T = nx.minimum_spanning_tree(G)

        # Visualize the graph and the minimum spanning tree
        pos = nx.spring_layout(G)
        fig, ax = plt.subplots(figsize=(8, 8))
        nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=500, ax=ax)
        nx.draw_networkx_edges(G, pos, edge_color="grey", ax=ax)
        nx.draw_networkx_labels(G, pos, font_size=12, font_family="sans-serif", ax=ax)
        nx.draw_networkx_edge_labels(
            G, pos, edge_labels={(u, v): d["weight"] for u, v, d in G.edges(data=True)}, ax=ax
        )
        nx.draw_networkx_edges(T, pos, edge_color="green", width=2, ax=ax)
        ax.set_title("Graph and Minimum Spanning Tree")
        plt.axis("off")
        st.pyplot(fig)

    elif graph_mode == "Create Your Own":
        st.write("### Create Your Own Graph")

        # Allow user to input the number of nodes and edges for custom graph
        num_nodes = st.number_input("Number of nodes", min_value=2, value=5)
        num_edges = st.number_input("Number of edges", min_value=1, value=6)

        # Create empty graph
        G = nx.Graph()

        # Allow user to input the edges and their weights manually
        edges = []
        for i in range(num_edges):
            source = st.number_input(f"Source node for edge {i+1}", min_value=0, max_value=num_nodes-1, key=f"source_{i}")
            dest = st.number_input(f"Destination node for edge {i+1}", min_value=0, max_value=num_nodes-1, key=f"dest_{i}")
            weight = st.number_input(f"Weight for edge ({source}, {dest})", min_value=1, value=1, key=f"weight_{i}")
            edges.append((source, dest, {"weight": weight}))

        # Add edges to the graph
        G.add_edges_from(edges)

        # Add nodes to the graph (to ensure all nodes are included, even if not explicitly added by the user)
        G.add_nodes_from(range(num_nodes))

        # Button to generate the graph and calculate MST
        if st.button("Generate Graph"):
            # Find the minimum spanning tree
            T = nx.minimum_spanning_tree(G)

            # Visualize the graph and the minimum spanning tree
            pos = nx.spring_layout(G)
            fig, ax = plt.subplots(figsize=(8, 8))
            nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=500, ax=ax)
            nx.draw_networkx_edges(G, pos, edge_color="grey", ax=ax)
            nx.draw_networkx_labels(G, pos, font_size=12, font_family="sans-serif", ax=ax)
            nx.draw_networkx_edge_labels(
                G, pos, edge_labels={(u, v): d["weight"] for u, v, d in G.edges(data=True)}, ax=ax
            )
            nx.draw_networkx_edges(T, pos, edge_color="green", width=2, ax=ax)
            ax.set_title("Custom Graph and Minimum Spanning Tree")
            plt.axis("off")
            st.pyplot(fig)

# Display the corresponding page based on sidebar option
if sidebar_option == "Graph: Minimum Spanning Tree":
    minimum_spanning_tree_graph()

def karate_club_graph():
    st.title("Graph: Karate Club")

    # Sidebar selection for Default Example or Custom Graph
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows the Karate Club graph, or you can create your own graph."
    )

    if graph_mode == "Default Example":
        # Load the Karate Club graph
        G = nx.karate_club_graph()

        # Display node degree
        st.write("### Node Degree")
        for v in G:
            st.write(f"Node {v:4}: Degree = {G.degree(v)}")

        # Visualize the graph using circular layout
        st.write("### Graph Visualization")
        fig, ax = plt.subplots()
        nx.draw_circular(G, with_labels=True, ax=ax, node_color="skyblue", edge_color="gray")
        ax.set_title("Karate Club Graph")
        st.pyplot(fig)

    elif graph_mode == "Create Your Own":
        st.write("### Create Your Own Graph")

        # Allow user to input the number of nodes and edges for custom graph
        num_nodes = st.number_input("Number of nodes", min_value=2, value=10)
        num_edges = st.number_input("Number of edges", min_value=1, value=15)
        seed = st.number_input("Seed for Random Graph (optional)", value=20160)

        # Generate graph button
        if st.button("Generate Graph"):
            # Create random graph with user input
            G = nx.gnm_random_graph(num_nodes, num_edges, seed=seed)

            # Display node degree
            st.write("### Node Degree")
            for v in G:
                st.write(f"Node {v:4}: Degree = {G.degree(v)}")

            # Visualize the graph using circular layout
            st.write("### Graph Visualization")
            fig, ax = plt.subplots()
            nx.draw_circular(G, with_labels=True, ax=ax, node_color="lightgreen", edge_color="gray")
            ax.set_title("Custom Graph")
            st.pyplot(fig)

# Display the corresponding page based on sidebar option
if sidebar_option == "Graph: Karate Club":
    karate_club_graph()

def erdos_renyi_graph():
    st.title("Graph: Erdos Renyi")

    # Sidebar selection for Default Example or Custom Graph
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows a random graph, or you can create your own Erdos-Renyi graph."
    )

    if graph_mode == "Default Example":
        # Default random graph parameters
        n = 10  # 10 nodes
        m = 20  # 20 edges
        seed = 20160  # seed random number generators for reproducibility

        # Create a button for generating the graph
        if st.button("Generate Graph"):
            # Create random graph
            G = nx.gnm_random_graph(n, m, seed=seed)

            # Display node properties
            st.write("### Node Degree and Clustering Coefficient")
            for v in nx.nodes(G):
                st.write(f"Node {v}: Degree = {nx.degree(G, v)}, Clustering Coefficient = {nx.clustering(G, v)}")

            # Display adjacency list
            st.write("### Adjacency List")
            adj_list = "\n".join([line for line in nx.generate_adjlist(G)])
            st.text(adj_list)

            # Visualize the graph
            pos = nx.spring_layout(G, seed=seed)  # Seed for reproducible layout
            fig, ax = plt.subplots()
            nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color="skyblue", edge_color="gray")
            ax.set_title("Erdos-Renyi Random Graph")
            st.pyplot(fig)

    elif graph_mode == "Create Your Own":
        st.write("### Create Your Own Random Erdos-Renyi Graph")

        # Allow user to input the number of nodes and edges
        n = st.number_input("Number of nodes (n)", min_value=2, value=10)
        m = st.number_input("Number of edges (m)", min_value=1, value=20)

        seed = st.number_input("Seed", value=20160)

        # Create a button for generating the graph
        if st.button("Generate Graph"):
            # Create random graph
            G = nx.gnm_random_graph(n, m, seed=seed)

            # Display node properties
            st.write("### Node Degree and Clustering Coefficient")
            for v in nx.nodes(G):
                st.write(f"Node {v}: Degree = {nx.degree(G, v)}, Clustering Coefficient = {nx.clustering(G, v)}")

            # Display adjacency list
            st.write("### Adjacency List")
            adj_list = "\n".join([line for line in nx.generate_adjlist(G)])
            st.text(adj_list)

            # Visualize the graph
            pos = nx.spring_layout(G, seed=seed)  # Seed for reproducible layout
            fig, ax = plt.subplots()
            nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color="skyblue", edge_color="gray")
            ax.set_title("Erdos-Renyi Random Graph")
            st.pyplot(fig)

# Display the corresponding page based on sidebar option
if sidebar_option == "Graph: Erdos Renyi":
    erdos_renyi_graph()

def dag_topological_layout():
    st.title("Graph: DAG - Topological Layout")

    # Sidebar selection for Default Example or Custom Graph
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows DAG layout in topological order, or you can create your own DAG."
    )

    if graph_mode == "Default Example":
        # Default DAG example
        G = nx.DiGraph(
            [
                ("f", "a"),
                ("a", "b"),
                ("a", "e"),
                ("b", "c"),
                ("b", "d"),
                ("d", "e"),
                ("f", "c"),
                ("f", "g"),
                ("h", "f"),
            ]
        )

        # Add layer attribute for multipartite_layout
        for layer, nodes in enumerate(nx.topological_generations(G)):
            for node in nodes:
                G.nodes[node]["layer"] = layer

        # Compute the multipartite_layout using the "layer" node attribute
        pos = nx.multipartite_layout(G, subset_key="layer")

        # Draw the graph
        fig, ax = plt.subplots()
        nx.draw_networkx(G, pos=pos, ax=ax)
        ax.set_title("DAG layout in topological order")
        fig.tight_layout()
        st.pyplot(fig)

    elif graph_mode == "Create Your Own":
        st.write("### Custom DAG Creation")

        # Allow the user to input the number of nodes
        num_nodes = st.number_input("Enter the number of nodes", min_value=2, value=5)

        # Create node names based on the number of nodes
        nodes = [str(i) for i in range(num_nodes)]

        st.write(f"### Nodes: {nodes}")
        st.write("#### Add Edges between Nodes")

        # Allow the user to select pairs of nodes to add edges
        edges = []
        for i in range(num_nodes):
            for j in range(i + 1, num_nodes):
                edge = (nodes[i], nodes[j])
                if st.checkbox(f"Add edge from {edge[0]} to {edge[1]}", value=False):
                    edges.append(edge)

        # Create the custom DAG
        G_custom = nx.DiGraph()
        G_custom.add_edges_from(edges)

        # Add layer attribute for multipartite_layout
        for layer, nodes in enumerate(nx.topological_generations(G_custom)):
            for node in nodes:
                G_custom.nodes[node]["layer"] = layer

        # Compute the multipartite_layout using the "layer" node attribute
        pos_custom = nx.multipartite_layout(G_custom, subset_key="layer")

        # Draw the custom DAG
        fig_custom, ax_custom = plt.subplots()
        nx.draw_networkx(G_custom, pos=pos_custom, ax=ax_custom)
        ax_custom.set_title("Custom DAG layout in topological order")
        fig_custom.tight_layout()
        st.pyplot(fig_custom)

# Display the corresponding page based on sidebar option
if sidebar_option == "Graph: DAG - Topological Layout":
    dag_topological_layout()

if sidebar_option == "3D Drawing: Animations of 3D Rotation":
    st.title("3D Drawing: Animations of 3D Rotation")

    # Provide options for Default Example or Custom Graph
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows a dodecahedral graph, or you can create your own custom graph."
    )

    # Define the function to create animation
    def generate_animation(G, pos, frames=100):
        nodes = np.array([pos[v] for v in G])
        edges = np.array([(pos[u], pos[v]) for u, v in G.edges()])

        fig = plt.figure()
        ax = fig.add_subplot(111, projection="3d")

        def init():
            ax.scatter(*nodes.T, alpha=0.2, s=100, color="blue")
            for vizedge in edges:
                ax.plot(*vizedge.T, color="gray")
            ax.grid(False)
            ax.set_axis_off()
            plt.tight_layout()
            return

        def _frame_update(index):
            ax.view_init(index * 0.2, index * 0.5)
            return

        ani = animation.FuncAnimation(
            fig,
            _frame_update,
            init_func=init,
            interval=50,
            cache_frame_data=False,
            frames=frames,
        )

        return ani

    # Default Example
    if graph_mode == "Default Example":
        G = nx.dodecahedral_graph()
        pos = nx.spectral_layout(G, dim=3)
        ani = generate_animation(G, pos)

    # Create Your Own Example
    else:
        st.write("### Customize Your Graph")
        num_nodes = st.slider("Number of Nodes", min_value=5, max_value=50, value=20)
        edge_prob = st.slider("Edge Probability", min_value=0.1, max_value=1.0, value=0.3)
        
        # Generate custom graph
        G = nx.erdos_renyi_graph(num_nodes, edge_prob)
        pos = nx.spectral_layout(G, dim=3)
        ani = generate_animation(G, pos)

    # Display animation in Streamlit
    with st.spinner("Rendering animation..."):
        ani.save("animation.gif", writer="imagemagick")
        st.image("animation.gif", caption="3D Graph Rotation", use_container_width=True)

# Default example code
def default_example():
    G = nx.cycle_graph(20)

    # 3d spring layout
    pos = nx.spring_layout(G, dim=3, seed=779)
    # Extract node and edge positions from the layout
    node_xyz = np.array([pos[v] for v in sorted(G)])
    edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()])

    # Create the 3D figure
    fig = plt.figure()
    ax = fig.add_subplot(111, projection="3d")

    # Plot the nodes - alpha is scaled by "depth" automatically
    ax.scatter(*node_xyz.T, s=100, ec="w")

    # Plot the edges
    for vizedge in edge_xyz:
        ax.plot(*vizedge.T, color="tab:gray")

    def _format_axes(ax):
        """Visualization options for the 3D axes."""
        # Turn gridlines off
        ax.grid(False)
        # Suppress tick labels
        for dim in (ax.xaxis, ax.yaxis, ax.zaxis):
            dim.set_ticks([]) 
        # Set axes labels
        ax.set_xlabel("x")
        ax.set_ylabel("y")
        ax.set_zlabel("z")

    _format_axes(ax)
    fig.tight_layout()
    st.pyplot(fig)

# Create your own graph option
def create_own_graph():
    # Input fields to customize the graph
    nodes = st.number_input("Number of nodes", min_value=2, max_value=50, value=20)
    seed = st.number_input("Seed for layout", value=779)
    
    # Add a button to generate the graph
    generate_button = st.button("Generate Graph")

    if generate_button:
        # Generate graph and layout
        G = nx.cycle_graph(nodes)
        pos = nx.spring_layout(G, dim=3, seed=seed)
        
        # Extract node and edge positions
        node_xyz = np.array([pos[v] for v in sorted(G)])
        edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()])

        # Create the 3D figure
        fig = plt.figure()
        ax = fig.add_subplot(111, projection="3d")

        # Plot the nodes
        ax.scatter(*node_xyz.T, s=100, ec="w")

        # Plot the edges
        for vizedge in edge_xyz:
            ax.plot(*vizedge.T, color="tab:gray")

        def _format_axes(ax):
            """Visualization options for the 3D axes."""
            ax.grid(False)
            for dim in (ax.xaxis, ax.yaxis, ax.zaxis):
                dim.set_ticks([])
            ax.set_xlabel("x")
            ax.set_ylabel("y")
            ax.set_zlabel("z")

        _format_axes(ax)
        fig.tight_layout()
        st.pyplot(fig)

if sidebar_option == "3D Drawing: Basic Matplotlib":
    st.title("3D Drawing: Basic Matplotlib")

    # Provide options for Default Example or Custom Graph
    graph_mode = st.radio(
        "Choose a Mode:",
        ("Default Example", "Create Your Own"),
        help="Default example shows a cycle graph, or you can create your own custom graph."
    )

    # Display the chosen option
    if graph_mode == "Default Example":
        default_example()
    elif graph_mode == "Create Your Own":
        create_own_graph()

# Function to display Weighted Graph
def display_weighted_graph():
    st.title("Drawing: Weighted Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default weighted graph example
        G = nx.Graph()

        G.add_edge("a", "b", weight=0.6)
        G.add_edge("a", "c", weight=0.2)
        G.add_edge("c", "d", weight=0.1)
        G.add_edge("c", "e", weight=0.7)
        G.add_edge("c", "f", weight=0.9)
        G.add_edge("a", "d", weight=0.3)

        elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] > 0.5]
        esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] <= 0.5]

        pos = nx.spring_layout(G, seed=7)  # positions for all nodes - seed for reproducibility

        # nodes
        nx.draw_networkx_nodes(G, pos, node_size=700)

        # edges
        nx.draw_networkx_edges(G, pos, edgelist=elarge, width=6)
        nx.draw_networkx_edges(
            G, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed"
        )

        # node labels
        nx.draw_networkx_labels(G, pos, font_size=20, font_family="sans-serif")
        # edge weight labels
        edge_labels = nx.get_edge_attributes(G, "weight")
        nx.draw_networkx_edge_labels(G, pos, edge_labels)

        ax = plt.gca()
        ax.margins(0.08)
        plt.axis("off")
        plt.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own graph with edges and weights
        edge_input = st.text_area(
            "Enter edges with weights (format: node1,node2,weight;node1,node2,weight;...)",
            "a,b,0.6;a,c,0.2;c,d,0.1;c,e,0.7;c,f,0.9;a,d,0.3"
        )

        # Parse the input string
        edges = edge_input.split(";")
        edge_list = []
        for edge in edges:
            node1, node2, weight = edge.split(",")
            edge_list.append((node1.strip(), node2.strip(), float(weight.strip())))

        # Add a button to generate the graph
        generate_button = st.button("Generate Graph")

        if generate_button:
            G_custom = nx.Graph()

            # Add edges to the graph
            for node1, node2, weight in edge_list:
                G_custom.add_edge(node1, node2, weight=weight)

            # Create layout for visualization
            pos = nx.spring_layout(G_custom, seed=7)

            # Determine edges based on weight
            elarge = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] > 0.5]
            esmall = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] <= 0.5]

            # Draw the graph
            nx.draw_networkx_nodes(G_custom, pos, node_size=700)
            nx.draw_networkx_edges(G_custom, pos, edgelist=elarge, width=6)
            nx.draw_networkx_edges(
                G_custom, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed"
            )
            nx.draw_networkx_labels(G_custom, pos, font_size=20, font_family="sans-serif")
            edge_labels = nx.get_edge_attributes(G_custom, "weight")
            nx.draw_networkx_edge_labels(G_custom, pos, edge_labels)

            ax = plt.gca()
            ax.margins(0.08)
            plt.axis("off")
            plt.tight_layout()
            st.pyplot(plt)

# Display Drawing: Weighted Graph if selected
if sidebar_option == "Drawing: Weighted Graph":
    display_weighted_graph()

from networkx.algorithms.approximation import christofides

# Function to display Traveling Salesman Problem
def display_tsp():
    st.title("Drawing: Traveling Salesman Problem")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of random geometric graph with TSP solution
        G = nx.random_geometric_graph(20, radius=0.4, seed=3)
        pos = nx.get_node_attributes(G, "pos")

        # Depot should be at (0.5, 0.5)
        pos[0] = (0.5, 0.5)

        H = G.copy()

        # Calculating the distances between the nodes as edge's weight.
        for i in range(len(pos)):
            for j in range(i + 1, len(pos)):
                dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1])
                dist = dist
                G.add_edge(i, j, weight=dist)

        # Find TSP cycle using Christofides' approximation
        cycle = christofides(G, weight="weight")
        edge_list = list(nx.utils.pairwise(cycle))

        # Draw closest edges on each node only
        nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5)

        # Draw the route
        nx.draw_networkx(
            G,
            pos,
            with_labels=True,
            edgelist=edge_list,
            edge_color="red",
            node_size=200,
            width=3,
        )

        st.pyplot(plt)
        st.write("The route of the traveler is:", cycle)

    elif option == "Create your own":
        # User can create their own graph
        num_nodes = st.slider("Number of nodes:", min_value=3, max_value=30, value=20)
        radius = st.slider("Edge radius:", min_value=0.1, max_value=1.0, value=0.4)

        # Add a button to generate a new graph
        generate_button = st.button("Generate Graph")

        if generate_button:
            # Create random geometric graph based on user input
            G_custom = nx.random_geometric_graph(num_nodes, radius, seed=3)
            pos = nx.get_node_attributes(G_custom, "pos")

            # Depot should be at (0.5, 0.5)
            pos[0] = (0.5, 0.5)

            H = G_custom.copy()

            # Calculating the distances between the nodes as edge's weight.
            for i in range(len(pos)):
                for j in range(i + 1, len(pos)):
                    dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1])
                    dist = dist
                    G_custom.add_edge(i, j, weight=dist)

            # Find TSP cycle using Christofides' approximation
            cycle = christofides(G_custom, weight="weight")
            edge_list = list(nx.utils.pairwise(cycle))

            # Draw closest edges on each node only
            nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5)

            # Draw the TSP route
            nx.draw_networkx(
                G_custom,
                pos,
                with_labels=True,
                edgelist=edge_list,
                edge_color="red",
                node_size=200,
                width=3,
            )

            st.pyplot(plt)
            st.write("The route of the traveler is:", cycle)

# Display Drawing: Traveling Salesman Problem if selected
if sidebar_option == "Drawing: Traveling Salesman Problem":
    display_tsp()

# Function to display Drawing: Spectral Embedding
def display_spectral_embedding():
    st.title("Drawing: Spectral Embedding")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of spectral embedding with a grid graph
        options = {"node_color": "C0", "node_size": 100}  # No labels
        G = nx.grid_2d_graph(6, 6)

        fig, axs = plt.subplots(3, 3, figsize=(12, 12))
        axs = axs.flatten()

        for i in range(7):  # Looping over 7 images
            if i == 0:
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 1:
                G.remove_edge((2, 2), (2, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 2:
                G.remove_edge((3, 2), (3, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 3:
                G.remove_edge((2, 2), (3, 2))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 4:
                G.remove_edge((2, 3), (3, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 5:
                G.remove_edge((1, 2), (1, 3))
                nx.draw_spectral(G, **options, ax=axs[i])
            elif i == 6:
                G.remove_edge((4, 2), (4, 3))
                nx.draw_spectral(G, **options, ax=axs[i])

        # Hide the last two subplots (8th and 9th)
        for j in range(7, 9):
            fig.delaxes(axs[j])  # Delete the extra axes

        st.pyplot(fig)

    elif option == "Create your own":
        # User can interactively modify the grid and see the results
        grid_size = st.slider("Choose grid size (n x n):", min_value=3, max_value=10, value=6)
        G_custom = nx.grid_2d_graph(grid_size, grid_size)

        # List all edges to allow removal
        all_edges = list(G_custom.edges())

        # Collect user input for edges to remove (before showing the "Generate" button)
        selected_edges_per_graph = []
        for i in range(7):  # Loop over 7 graphs
            selected_edges = st.multiselect(f"Select edges to remove for graph {i+1}:",
                                            options=[str(edge) for edge in all_edges])
            selected_edges_per_graph.append(selected_edges)

        # Add "Generate" button after edge selection
        generate_button = st.button("Generate Graph")

        if generate_button:
            fig, axs = plt.subplots(3, 3, figsize=(12, 12))
            axs = axs.flatten()

            # Loop through each subplot and allow edge removal individually
            for i in range(7):  # Loop over 7 graphs
                edges_to_remove = [tuple(eval(edge)) for edge in selected_edges_per_graph[i]]

                # Remove the selected edges
                G_custom_copy = G_custom.copy()
                G_custom_copy.remove_edges_from(edges_to_remove)

                # Draw the graph with removed edges
                nx.draw_spectral(G_custom_copy, **{"node_color": "C0", "node_size": 100}, ax=axs[i])

            # Hide the last two subplots (8th and 9th)
            for j in range(7, 9):
                fig.delaxes(axs[j])  # Delete the extra axes

            st.pyplot(fig)

# Display Drawing: Spectral Embedding if selected
if sidebar_option == "Drawing: Spectral Embedding":
    display_spectral_embedding()

# Function to display Drawing: Simple Path
def display_simple_path():
    st.title("Drawing: Simple Path")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of a simple path graph
        G = nx.path_graph(8)
        pos = nx.spring_layout(G, seed=47)  # Seed layout for reproducibility

        # Draw the graph
        nx.draw(G, pos=pos)
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own path graph with a custom number of nodes
        num_nodes = st.number_input("Number of nodes in the path:", min_value=2, max_value=50, value=8)

        if st.button("Generate Graph"):
            # Generate a path graph with user-specified number of nodes
            G_custom = nx.path_graph(num_nodes)
            pos = nx.spring_layout(G_custom, seed=47)  # Seed layout for reproducibility

            # Draw the graph
            nx.draw(G_custom, pos=pos)
            st.pyplot(plt)

# Display Drawing: Simple Path if selected
if sidebar_option == "Drawing: Simple Path":
    display_simple_path()

# Function to display Drawing: Self-loops
def display_self_loops():
    st.title("Drawing: Self-loops")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default example of a graph with self-loops
        G = nx.complete_graph(3, create_using=nx.DiGraph)
        G.add_edge(0, 0)  # Add a self-loop to node 0
        pos = nx.circular_layout(G)

        # Draw the graph
        nx.draw(G, pos, with_labels=True)

        # Add self-loops to the remaining nodes
        edgelist = [(1, 1), (2, 2)]
        G.add_edges_from(edgelist)

        # Draw the newly added self-loops with different formatting
        nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed")
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own graph with self-loops
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=20, value=3)
        add_self_loops = st.checkbox("Add self-loops to all nodes?", value=True)

        if st.button("Generate Graph"):
            # Generate a complete graph
            G = nx.complete_graph(num_nodes, create_using=nx.DiGraph)
            
            # Optionally add self-loops to all nodes
            if add_self_loops:
                for node in G.nodes():
                    G.add_edge(node, node)

            pos = nx.circular_layout(G)
            
            # Draw the graph with self-loops
            nx.draw(G, pos, with_labels=True)

            # Style self-loops differently
            edgelist = [(node, node) for node in G.nodes()]
            nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed")
            st.pyplot(plt)

# Display Drawing: Self-loops if selected
if sidebar_option == "Drawing: Self-loops":
    display_self_loops()

# Function to display Drawing: Random Geometric Graph
def display_random_geometric_graph():
    st.title("Drawing: Random Geometric Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Default random geometric graph example
        G = nx.random_geometric_graph(200, 0.125, seed=896803)
        pos = nx.get_node_attributes(G, "pos")

        # Find node near the center (0.5, 0.5)
        dmin = 1
        ncenter = 0
        for n in pos:
            x, y = pos[n]
            d = (x - 0.5) ** 2 + (y - 0.5) ** 2
            if d < dmin:
                ncenter = n
                dmin = d

        # Color by path length from node near center
        p = dict(nx.single_source_shortest_path_length(G, ncenter))

        plt.figure(figsize=(8, 8))
        nx.draw_networkx_edges(G, pos, alpha=0.4)
        nx.draw_networkx_nodes(
            G,
            pos,
            nodelist=list(p.keys()),
            node_size=80,
            node_color=list(p.values()),
            cmap=plt.cm.Reds_r,
        )

        plt.xlim(-0.05, 1.05)
        plt.ylim(-0.05, 1.05)
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # User can create their own random geometric graph
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=200)
        distance = st.slider("Edge distance threshold (between 0 and 1):", 0.01, 1.0, 0.125)

        if st.button("Generate Graph"):
            # Generate the graph with user input
            G = nx.random_geometric_graph(num_nodes, distance, seed=896803)
            pos = nx.get_node_attributes(G, "pos")

            # Find node near the center (0.5, 0.5)
            dmin = 1
            ncenter = 0
            for n in pos:
                x, y = pos[n]
                d = (x - 0.5) ** 2 + (y - 0.5) ** 2
                if d < dmin:
                    ncenter = n
                    dmin = d

            # Color by path length from node near center
            p = dict(nx.single_source_shortest_path_length(G, ncenter))

            plt.figure(figsize=(8, 8))
            nx.draw_networkx_edges(G, pos, alpha=0.4)
            nx.draw_networkx_nodes(
                G,
                pos,
                nodelist=list(p.keys()),
                node_size=80,
                node_color=list(p.values()),
                cmap=plt.cm.Reds_r,
            )

            plt.xlim(-0.05, 1.05)
            plt.ylim(-0.05, 1.05)
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: Random Geometric Graph if selected
if sidebar_option == "Drawing: Random Geometric Graph":
    display_random_geometric_graph()

# Function to display Drawing: Rainbow Coloring
def display_rainbow_coloring():
    st.title("Drawing: Rainbow Coloring")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Rainbow Coloring with default parameters
        node_dist_to_color = {
            1: "tab:red",
            2: "tab:orange",
            3: "tab:olive",
            4: "tab:green",
            5: "tab:blue",
            6: "tab:purple",
        }

        nnodes = 13
        G = nx.complete_graph(nnodes)

        n = (nnodes - 1) // 2
        ndist_iter = list(range(1, n + 1))
        ndist_iter += ndist_iter[::-1]

        def cycle(nlist, n):
            return nlist[-n:] + nlist[:-n]

        nodes = list(G.nodes())
        for i, nd in enumerate(ndist_iter):
            for u, v in zip(nodes, cycle(nodes, i + 1)):
                G[u][v]["color"] = node_dist_to_color[nd]

        pos = nx.circular_layout(G)
        # Create a figure with 1:1 aspect ratio to preserve the circle.
        fig, ax = plt.subplots(figsize=(8, 8))
        node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0}
        nx.draw_networkx_nodes(G, pos, **node_opts)
        nx.draw_networkx_labels(G, pos, font_size=14)
        # Extract color from edge data
        edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)]
        nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors)

        ax.set_axis_off()
        fig.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        nnodes = st.number_input("Number of nodes (max=14):", min_value=2, max_value=50, value=13)
        
        # Allow users to create their own color map
        red = st.color_picker("Select a color for Red (1)", "#ff0000")
        orange = st.color_picker("Select a color for Orange (2)", "#ff7f00")
        olive = st.color_picker("Select a color for Olive (3)", "#808000")
        green = st.color_picker("Select a color for Green (4)", "#008000")
        blue = st.color_picker("Select a color for Blue (5)", "#0000ff")
        purple = st.color_picker("Select a color for Purple (6)", "#800080")
        
        node_dist_to_color = {
            1: red,
            2: orange,
            3: olive,
            4: green,
            5: blue,
            6: purple,
        }

        if st.button("Generate Graph"):
            G = nx.complete_graph(nnodes)

            n = (nnodes - 1) // 2
            ndist_iter = list(range(1, n + 1))
            ndist_iter += ndist_iter[::-1]

            def cycle(nlist, n):
                return nlist[-n:] + nlist[:-n]

            nodes = list(G.nodes())
            for i, nd in enumerate(ndist_iter):
                for u, v in zip(nodes, cycle(nodes, i + 1)):
                    G[u][v]["color"] = node_dist_to_color[nd]

            pos = nx.circular_layout(G)
            # Create a figure with 1:1 aspect ratio to preserve the circle.
            fig, ax = plt.subplots(figsize=(8, 8))
            node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0}
            nx.draw_networkx_nodes(G, pos, **node_opts)
            nx.draw_networkx_labels(G, pos, font_size=14)
            # Extract color from edge data
            edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)]
            nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors)

            ax.set_axis_off()
            fig.tight_layout()
            st.pyplot(plt)

# Display Drawing: Rainbow Coloring if selected
if sidebar_option == "Drawing: Rainbow Coloring":
    display_rainbow_coloring()

# Function to display Drawing: Node Colormap
def display_node_colormap():
    st.title("Drawing: Node Colormap")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.cycle_graph(24)
        pos = nx.circular_layout(G)
        nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
        st.pyplot(plt)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=100, value=24)
        color_map = st.selectbox("Select a colormap:", plt.colormaps(), index=plt.colormaps().index('Blues'))

        if st.button("Generate Graph"):
            # Create cycle graph with custom number of nodes
            G_custom = nx.cycle_graph(num_nodes)
            pos = nx.circular_layout(G_custom)
            nx.draw(G_custom, pos, node_color=range(num_nodes), node_size=800, cmap=plt.get_cmap(color_map))
            st.pyplot(plt)

# Display Drawing: Node Colormap if selected
if sidebar_option == "Drawing: Node Colormap":
    display_node_colormap()

# Function to create a multipartite graph
def multilayered_graph(*subset_sizes):
    G = nx.Graph()
    layers = len(subset_sizes)
    node_id = 0

    # Create nodes for each subset and add edges between nodes in adjacent layers
    for i, size in enumerate(subset_sizes):
        for j in range(size):
            G.add_node(node_id, layer=i)  # Assign a layer attribute
            node_id += 1

    # Add edges between nodes in adjacent layers
    node_ids = list(G.nodes())
    for i in range(layers - 1):
        layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i]
        next_layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i + 1]
        for node in layer_nodes:
            for next_node in next_layer_nodes:
                G.add_edge(node, next_node)

    return G

# Function to display Multipartite Layout
def display_multipartite_layout():
    st.title("Drawing: Multipartite Layout")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3]
        subset_color = [
            "gold", "violet", "violet", "violet", "violet", 
            "limegreen", "limegreen", "darkorange"
        ]
        
        # Generate and plot multipartite graph
        G = multilayered_graph(*subset_sizes)
        color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)]
        pos = nx.multipartite_layout(G, subset_key="layer")
        
        plt.figure(figsize=(8, 8))
        nx.draw(G, pos, node_color=color, with_labels=False)
        plt.axis("equal")
        st.pyplot(plt)

    elif option == "Create your own":
        # Let the user input the subset sizes and colors
        st.write("Enter the subset sizes and colors to create your own multipartite graph.")

        subset_sizes_input = st.text_area("Enter subset sizes (comma-separated, e.g., 5,5,4,3):", value="5,5,4,3,2,4,4,3")
        subset_sizes = list(map(int, subset_sizes_input.split(',')))

        subset_colors_input = st.text_area("Enter subset colors (comma-separated, e.g., gold,violet,green):", value="gold,violet,violet,violet,violet,limegreen,limegreen,darkorange")
        subset_colors = subset_colors_input.split(',')

        # Check if the number of colors matches the number of subsets
        if len(subset_sizes) != len(subset_colors):
            st.error("The number of colors should match the number of subsets.")
        else:
            # Add a button to generate the graph
            if st.button("Generate Graph"):
                # Generate and plot multipartite graph
                G = multilayered_graph(*subset_sizes)
                color = [subset_colors[data["layer"]] for v, data in G.nodes(data=True)]
                pos = nx.multipartite_layout(G, subset_key="layer")
                
                plt.figure(figsize=(8, 8))
                nx.draw(G, pos, node_color=color, with_labels=False)
                plt.axis("equal")
                st.pyplot(plt)

# Display Drawing: Multipartite Layout if selected
if sidebar_option == "Drawing: Multipartite Layout":
    display_multipartite_layout()

# Function to display Labels and Colors
def display_labels_and_colors():
    st.title("Drawing: Labels And Colors")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create a cubical graph
        G = nx.cubical_graph()
        pos = nx.spring_layout(G, seed=3113794652)  # positions for all nodes

        # Draw nodes with different colors
        options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9}
        nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options)
        nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options)

        # Draw edges
        nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
        nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
            width=8,
            alpha=0.5,
            edge_color="tab:red",
        )
        nx.draw_networkx_edges(
            G,
            pos,
            edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
            width=8,
            alpha=0.5,
            edge_color="tab:blue",
        )

        # Add labels for nodes
        labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"}
        nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke")

        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # Let the user input the nodes and edges of the graph
        st.write("Enter the nodes and edges to create your own labeled graph.")

        nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d")
        node_labels = nodes.split(',')

        edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d")
        edge_list = [tuple(edge.split('-')) for edge in edges.split(',')]

        # Let user choose colors for nodes and edges
        node_color = st.color_picker("Pick a color for nodes:", "#FF6347")
        edge_color = st.color_picker("Pick a color for edges:", "#4682B4")

        # Add a button to generate the graph
        if st.button("Generate Graph"):
            # Generate graph based on user input
            G_custom = nx.Graph()
            G_custom.add_nodes_from(node_labels)
            G_custom.add_edges_from(edge_list)

            # Generate layout for the nodes
            pos_custom = nx.spring_layout(G_custom)

            # Draw the graph
            nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9)
            nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7)

            # Create custom labels
            custom_labels = {node: f"${node}$" for node in node_labels}
            nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke")

            plt.tight_layout()
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: Labels And Colors if selected
if sidebar_option == "Drawing: Labels And Colors":
    display_labels_and_colors()

# Function to display Drawing: House With Colors
def display_house_with_colors():
    st.title("Drawing: House With Colors")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create the house graph and explicitly set positions
        G = nx.house_graph()
        pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}

        # Plot nodes with different properties for the "wall" and "roof" nodes
        nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue")
        nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange")
        nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
        
        # Customize axes
        ax = plt.gca()
        ax.margins(0.11)
        plt.tight_layout()
        plt.axis("off")
        st.pyplot(plt)

    elif option == "Create your own":
        # Allow the user to specify node positions and colors
        st.write("Specify positions for the house graph nodes.")

        positions = {}
        for i in range(5):
            x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
            y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
            
            positions[i] = (x, y)

        # Allow the user to specify colors for wall and roof nodes
        wall_color = st.color_picker("Wall color:", "#0000FF")
        roof_color = st.color_picker("Roof color:", "#FFA500")

        if st.button("Generate"):
            # Create the house graph with the specified positions
            G_custom = nx.house_graph()

            # Plot nodes with user-defined properties for wall and roof nodes
            nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color)
            nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color)
            nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6)

            # Customize axes
            ax = plt.gca()
            ax.margins(0.11)
            plt.tight_layout()
            plt.axis("off")
            st.pyplot(plt)

# Display Drawing: House With Colors if selected
if sidebar_option == "Drawing: House With Colors":
    display_house_with_colors()

# Function to display Four Grids visualization for Drawing: Four Grids
def display_four_grids():
    st.title("Drawing: Four Grids")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate a 4x4 grid graph
        G = nx.grid_2d_graph(4, 4)  # 4x4 grid
        pos = nx.spring_layout(G, iterations=100, seed=39775)

        # Create a 2x2 subplot
        fig, all_axes = plt.subplots(2, 2)
        ax = all_axes.flat

        # Draw graphs in 4 different styles
        nx.draw(G, pos, ax=ax[0], font_size=8)
        nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False)
        nx.draw(
            G,
            pos,
            ax=ax[2],
            node_color="tab:green",
            edgecolors="tab:gray",  # Node surface color
            edge_color="tab:gray",  # Color of graph edges
            node_size=250,
            with_labels=False,
            width=6,
        )
        H = G.to_directed()
        nx.draw(
            H,
            pos,
            ax=ax[3],
            node_color="tab:orange",
            node_size=20,
            with_labels=False,
            arrowsize=10,
            width=2,
        )

        # Set margins for the axes so that nodes aren't clipped
        for a in ax:
            a.margins(0.10)
        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        # Allow the user to customize the grid dimensions
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4)

        if st.button("Generate"):
            # Generate a custom grid graph
            G_custom = nx.grid_2d_graph(rows, cols)  # Create the grid graph
            pos = nx.spring_layout(G_custom, iterations=100, seed=39775)

            # Create a 2x2 subplot
            fig, all_axes = plt.subplots(2, 2)
            ax = all_axes.flat

            # Draw graphs in 4 different styles
            nx.draw(G_custom, pos, ax=ax[0], font_size=8)
            nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False)
            nx.draw(
                G_custom,
                pos,
                ax=ax[2],
                node_color="tab:green",
                edgecolors="tab:gray",  # Node surface color
                edge_color="tab:gray",  # Color of graph edges
                node_size=250,
                with_labels=False,
                width=6,
            )
            H = G_custom.to_directed()
            nx.draw(
                H,
                pos,
                ax=ax[3],
                node_color="tab:orange",
                node_size=20,
                with_labels=False,
                arrowsize=10,
                width=2,
            )

            # Set margins for the axes so that nodes aren't clipped
            for a in ax:
                a.margins(0.10)
            fig.tight_layout()
            st.pyplot(fig)

# Display Drawing: Four Grids if selected
if sidebar_option == "Drawing: Four Grids":
    display_four_grids()

# Function to display Eigenvalue analysis for Drawing: Eigenvalues
def display_eigenvalue_analysis():
    st.title("Drawing: Eigenvalues")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Generate random graph with 1000 nodes and 5000 edges
        n = 1000
        m = 5000
        G = nx.gnm_random_graph(n, m, seed=5040)  # Seed for reproducibility

        # Calculate the normalized Laplacian matrix
        L = nx.normalized_laplacian_matrix(G)
        eigenvalues = np.linalg.eigvals(L.toarray())

        # Print largest and smallest eigenvalues
        st.write(f"Largest eigenvalue: {max(eigenvalues)}")
        st.write(f"Smallest eigenvalue: {min(eigenvalues)}")

        # Display the histogram of eigenvalues
        st.write("### Eigenvalue Histogram")
        plt.hist(eigenvalues, bins=100)
        plt.xlim(0, 2)  # Eigenvalues between 0 and 2
        st.pyplot(plt)

    elif option == "Create your own":
        # Allow the user to customize the number of nodes and edges
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
        m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500)

        if st.button("Generate"):
            # Generate a random graph with the custom number of nodes and edges
            G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040)  # Seed for reproducibility

            # Calculate the normalized Laplacian matrix
            L = nx.normalized_laplacian_matrix(G_custom)
            eigenvalues = np.linalg.eigvals(L.toarray())

            # Print largest and smallest eigenvalues
            st.write(f"Largest eigenvalue: {max(eigenvalues)}")
            st.write(f"Smallest eigenvalue: {min(eigenvalues)}")

            # Display the histogram of eigenvalues
            st.write("### Eigenvalue Histogram")
            plt.hist(eigenvalues, bins=100)
            plt.xlim(0, 2)  # Eigenvalues between 0 and 2
            st.pyplot(plt)

# Display Drawing: Eigenvalues if selected
if sidebar_option == "Drawing: Eigenvalues":
    display_eigenvalue_analysis()

# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
    pathlengths = []
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    dist = {}
    for p in pathlengths:
        dist[p] = dist.get(p, 0) + 1
    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    # Visualize the graph
    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)  # Seed layout for reproducibility
    draw_graph(G, pos)

# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
    st.write("### Adjacency List:")
    for line in nx.generate_adjlist(G):
        st.write(line)
    
    # Write the graph's edge list to a file
    st.write("### Writing Edge List to 'grid.edgelist' file:")
    nx.write_edgelist(G, path="grid.edgelist", delimiter=":")  # Save edge list
    st.write("Edge list written to 'grid.edgelist'")

    # Read the graph from the edge list
    st.write("### Reading Edge List from 'grid.edgelist' file:")
    H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    st.write("Edge list read into graph H")

    # Visualize the graph
    st.write("### Graph Visualization:")
    pos = nx.spring_layout(H, seed=200)  # Seed for reproducibility
    draw_graph(H, pos)

# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
    options = {
        "font_size": 36,
        "node_size": 3000,
        "node_color": "white",
        "edgecolors": "black",
        "linewidths": 5,
        "width": 5,
    }
    
    # Draw the network
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Simple Directed Graphs for Basic: Simple graph Directed
def display_simple_directed_graph(G, pos=None):
    options = {
        "node_size": 500,
        "node_color": "lightblue",
        "arrowsize": 20,
        "width": 2,
        "edge_color": "gray",
    }
    
    # Draw the directed graph with the given positions and options
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Custom Node Position Graphs for Drawing: Custom Node Position
def display_custom_node_position():
    st.title("Drawing: Custom Node Position")
    
    # Default example graph (path graph with custom node position)
    G = nx.path_graph(20)
    center_node = 5
    edge_nodes = set(G) - {center_node}
    
    # Ensure the nodes around the circle are evenly distributed
    pos = nx.circular_layout(G.subgraph(edge_nodes))
    pos[center_node] = np.array([0, 0])  # Manually specify node position
    
    # Draw the graph
    draw_graph(G, pos)

# Function to display Cluster Layout for Drawing: Cluster Layout
def display_cluster_layout():
    st.title("Drawing: Cluster Layout")

    G = nx.davis_southern_women_graph()  # Example graph
    communities = nx.community.greedy_modularity_communities(G)

    # Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor
    supergraph = nx.cycle_graph(len(communities))
    superpos = nx.spring_layout(G, scale=50, seed=429)

    # Use the "supernode" positions as the center of each node cluster
    centers = list(superpos.values())
    pos = {}
    for center, comm in zip(centers, communities):
        pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))

        # Nodes colored by cluster
    for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
        nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
    nx.draw_networkx_edges(G, pos=pos)

    plt.tight_layout()
    st.pyplot(plt)

# Function to display Degree Analysis for Drawing: Degree Analysis
def display_degree_analysis():
    st.title("Drawing: Degree Analysis")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.gnp_random_graph(100, 0.02, seed=10374196)
        
        degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
        dmax = max(degree_sequence)

        fig = plt.figure("Degree of a random graph", figsize=(8, 8))
        # Create a gridspec for adding subplots of different sizes
        axgrid = fig.add_gridspec(5, 4)

        ax0 = fig.add_subplot(axgrid[0:3, :])
        Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
        pos = nx.spring_layout(Gcc, seed=10396953)
        nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
        nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
        ax0.set_title("Connected components of G")
        ax0.set_axis_off()

        ax1 = fig.add_subplot(axgrid[3:, :2])
        ax1.plot(degree_sequence, "b-", marker="o")
        ax1.set_title("Degree Rank Plot")
        ax1.set_ylabel("Degree")
        ax1.set_xlabel("Rank")

        ax2 = fig.add_subplot(axgrid[3:, 2:])
        ax2.bar(*np.unique(degree_sequence, return_counts=True))
        ax2.set_title("Degree histogram")
        ax2.set_xlabel("Degree")
        ax2.set_ylabel("# of Nodes")

        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100)
        p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02)
        
        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196)
                degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True)
                dmax = max(degree_sequence)

                fig = plt.figure("Degree of a random graph", figsize=(8, 8))
                # Create a gridspec for adding subplots of different sizes
                axgrid = fig.add_gridspec(5, 4)

                ax0 = fig.add_subplot(axgrid[0:3, :])
                Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0])
                pos = nx.spring_layout(Gcc, seed=10396953)
                nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
                nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
                ax0.set_title("Connected components of G")
                ax0.set_axis_off()

                ax1 = fig.add_subplot(axgrid[3:, :2])
                ax1.plot(degree_sequence, "b-", marker="o")
                ax1.set_title("Degree Rank Plot")
                ax1.set_ylabel("Degree")
                ax1.set_xlabel("Rank")

                ax2 = fig.add_subplot(axgrid[3:, 2:])
                ax2.bar(*np.unique(degree_sequence, return_counts=True))
                ax2.set_title("Degree histogram")
                ax2.set_xlabel("Degree")
                ax2.set_ylabel("# of Nodes")

                fig.tight_layout()
                st.pyplot(fig)

# Function to display Ego Graph for Drawing: Ego Graph
def display_ego_graph():
    st.title("Drawing: Ego Graph")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        # Create a BA model graph - use seed for reproducibility
        n = 1000
        m = 2
        seed = 20532
        G = nx.barabasi_albert_graph(n, m, seed=seed)

        # Find node with largest degree
        node_and_degree = G.degree()
        (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

        # Create ego graph of main hub
        hub_ego = nx.ego_graph(G, largest_hub)

        # Draw graph
        pos = nx.spring_layout(hub_ego, seed=seed)  # Seed layout for reproducibility
        nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

        # Draw ego as large and red
        options = {"node_size": 300, "node_color": "r"}
        nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
        plt.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
        m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2)

        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532)

                # Find node with largest degree
                node_and_degree = G_custom.degree()
                (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

                # Create ego graph of main hub
                hub_ego = nx.ego_graph(G_custom, largest_hub)

                # Draw graph
                pos = nx.spring_layout(hub_ego, seed=20532)  # Seed layout for reproducibility
                nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

                # Draw ego as large and red
                options = {"node_size": 300, "node_color": "r"}
                nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
                plt.tight_layout()
                st.pyplot(plt)

# Display Drawing: Ego Graph if selected
if sidebar_option == "Drawing: Ego Graph":
    display_ego_graph()

# Display Basic: Properties if selected
elif sidebar_option == "Basic: Properties":
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
    st.title("Basic: Read and write graphs")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.grid_2d_graph(5, 5)
        display_read_write_graph(G)

    elif option == "Create your own":
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)

        if st.button("Generate"):
            if rows >= 2 and cols >= 2:
                G_custom = nx.grid_2d_graph(rows, cols)
                display_read_write_graph(G_custom)

# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
    st.title("Basic: Simple graph")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.Graph()
        G.add_edge(1, 2)
        G.add_edge(1, 3)
        G.add_edge(1, 5)
        G.add_edge(2, 3)
        G.add_edge(3, 4)
        G.add_edge(4, 5)

        pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
        display_simple_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.Graph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_graph(G_custom, pos)

# Display Basic: Simple Directed Graph if selected
elif sidebar_option == "Basic: Simple graph Directed":
    st.title("Basic: Simple graph Directed")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])

        left_nodes = [0, 1, 2]
        middle_nodes = [3, 4]
        right_nodes = [5, 6]

        pos = {n: (0, i) for i, n in enumerate(left_nodes)}
        pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
        pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})

        display_simple_directed_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.DiGraph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_directed_graph(G_custom, pos)

# Display Drawing: Custom Node Position if selected
elif sidebar_option == "Drawing: Custom Node Position":
    display_custom_node_position()

# Display Drawing: Cluster Layout if selected
elif sidebar_option == "Drawing: Cluster Layout":
    display_cluster_layout()

# Display Drawing: Degree Analysis if selected
elif sidebar_option == "Drawing: Degree Analysis":
    display_degree_analysis()