PARA / v1.txt
shukdevdatta123's picture
Create v1.txt
990ba8a verified
import os
import json
import time
import gradio as gr
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional, Union
# Import Groq - we'll install it in requirements.txt
from groq import Groq
class PersonalAIResearchAssistant:
"""
Personal AI Research Assistant (PARA) using Groq's compound models with agentic capabilities.
"""
def __init__(self, api_key: str,
knowledge_base_path: str = "knowledge_base.json",
model: str = "compound-beta"):
"""
Initialize the PARA system.
Args:
api_key: Groq API key
knowledge_base_path: Path to store persistent knowledge
model: Which Groq model to use ('compound-beta' or 'compound-beta-mini')
"""
self.api_key = api_key
if not self.api_key:
raise ValueError("No API key provided")
self.client = Groq(api_key=self.api_key)
self.model = model
self.knowledge_base_path = Path(knowledge_base_path)
self.knowledge_base = self._load_knowledge_base()
def _load_knowledge_base(self) -> Dict:
"""Load existing knowledge base or create a new one"""
if self.knowledge_base_path.exists():
with open(self.knowledge_base_path, 'r') as f:
return json.load(f)
else:
# Initialize with empty collections
kb = {
"topics": {},
"research_digests": [],
"code_analyses": [],
"concept_connections": [],
"metadata": {
"created_at": datetime.now().isoformat(),
"last_updated": datetime.now().isoformat()
}
}
self._save_knowledge_base(kb)
return kb
def _save_knowledge_base(self, kb: Dict = None) -> None:
"""Save the knowledge base to disk"""
if kb is None:
kb = self.knowledge_base
# Update metadata
kb["metadata"]["last_updated"] = datetime.now().isoformat()
with open(self.knowledge_base_path, 'w') as f:
json.dump(kb, f, indent=2)
def _extract_tool_info(self, response) -> Dict:
"""
Extract tool usage information in a JSON serializable format
"""
tool_info = None
if hasattr(response.choices[0].message, 'executed_tools'):
# Convert ExecutedTool objects to dictionaries
tools = response.choices[0].message.executed_tools
if tools:
tool_info = []
for tool in tools:
# Extract only serializable data
tool_dict = {
"tool_type": getattr(tool, "type", "unknown"),
"tool_name": getattr(tool, "name", "unknown"),
}
# Add any other relevant attributes in a serializable form
if hasattr(tool, "input"):
tool_dict["input"] = str(tool.input)
if hasattr(tool, "output"):
tool_dict["output"] = str(tool.output)
tool_info.append(tool_dict)
return tool_info
def research_digest(self, topic: str,
include_domains: List[str] = None,
exclude_domains: List[str] = None,
max_results: int = 5) -> Dict:
"""
Generate a research digest on a specific topic
Args:
topic: The research topic to investigate
include_domains: List of domains to include (e.g., ["arxiv.org", "*.edu"])
exclude_domains: List of domains to exclude
max_results: Maximum number of key findings to include
Returns:
Research digest including key findings and references
"""
# Build the prompt
prompt = f"""Generate a research digest on the topic: {topic}
Please find the most recent and relevant information, focusing on:
1. Key findings or breakthroughs
2. Current trends and methodologies
3. Influential researchers or organizations
4. Practical applications
Structure your response as a concise summary with {max_results} key points maximum.
Include source information where possible.
"""
# Set up API parameters
params = {
"messages": [
{"role": "system", "content": "You are a research assistant tasked with finding and summarizing the latest information on specific topics."},
{"role": "user", "content": prompt}
],
"model": self.model
}
# Add domain filtering if specified
if include_domains and include_domains[0].strip():
params["include_domains"] = [domain.strip() for domain in include_domains]
if exclude_domains and exclude_domains[0].strip():
params["exclude_domains"] = [domain.strip() for domain in exclude_domains]
# Make the API call
response = self.client.chat.completions.create(**params)
content = response.choices[0].message.content
# Extract tool usage information in a serializable format
tool_info = self._extract_tool_info(response)
# Create digest entry
digest = {
"topic": topic,
"timestamp": datetime.now().isoformat(),
"content": content,
"tool_usage": tool_info,
"parameters": {
"include_domains": include_domains,
"exclude_domains": exclude_domains,
}
}
# Add to knowledge base
self.knowledge_base["research_digests"].append(digest)
# Update topic entry in knowledge base
if topic not in self.knowledge_base["topics"]:
self.knowledge_base["topics"][topic] = {
"first_researched": datetime.now().isoformat(),
"research_count": 1,
"related_topics": []
}
else:
self.knowledge_base["topics"][topic]["research_count"] += 1
self.knowledge_base["topics"][topic]["last_researched"] = datetime.now().isoformat()
# Save updated knowledge base
self._save_knowledge_base()
return digest
def evaluate_code(self, code_snippet: str, language: str = "python",
analysis_type: str = "full") -> Dict:
"""
Evaluate a code snippet for issues and suggest improvements
Args:
code_snippet: The code to evaluate
language: Programming language of the code
analysis_type: Type of analysis to perform ('full', 'security', 'performance', 'style')
Returns:
Analysis results including issues and suggestions
"""
# Build the prompt
prompt = f"""Analyze the following {language} code:
```{language}
{code_snippet}
```
Please perform a {analysis_type} analysis, including:
1. Identifying any bugs or potential issues
2. Security vulnerabilities (if applicable)
3. Performance considerations
4. Style and best practices
5. Suggested improvements
If possible, execute the code to verify functionality.
"""
# Make the API call
response = self.client.chat.completions.create(
messages=[
{"role": "system", "content": f"You are a code analysis expert specializing in {language}."},
{"role": "user", "content": prompt}
],
model=self.model
)
content = response.choices[0].message.content
# Extract tool usage information in a serializable format
tool_info = self._extract_tool_info(response)
# Create code analysis entry
analysis = {
"code_snippet": code_snippet,
"language": language,
"analysis_type": analysis_type,
"timestamp": datetime.now().isoformat(),
"content": content,
"tool_usage": tool_info
}
# Add to knowledge base
self.knowledge_base["code_analyses"].append(analysis)
self._save_knowledge_base()
return analysis
def connect_concepts(self, concept_a: str, concept_b: str) -> Dict:
"""
Identify connections between two seemingly different concepts
Args:
concept_a: First concept
concept_b: Second concept
Returns:
Analysis of connections between the concepts
"""
# Build the prompt
prompt = f"""Explore the connections between these two concepts:
Concept A: {concept_a}
Concept B: {concept_b}
Please identify:
1. Direct connections or shared principles
2. Historical influences between them
3. Common applications or use cases
4. How insights from one field might benefit the other
5. Potential for innovative combinations
Search for the most up-to-date information that might connect these concepts.
"""
# Make the API call
response = self.client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a cross-disciplinary research assistant specialized in finding connections between different fields and concepts."},
{"role": "user", "content": prompt}
],
model=self.model
)
content = response.choices[0].message.content
# Extract tool usage information in a serializable format
tool_info = self._extract_tool_info(response)
# Create connection entry
connection = {
"concept_a": concept_a,
"concept_b": concept_b,
"timestamp": datetime.now().isoformat(),
"content": content,
"tool_usage": tool_info
}
# Add to knowledge base
self.knowledge_base["concept_connections"].append(connection)
# Update topic entries
for concept in [concept_a, concept_b]:
if concept not in self.knowledge_base["topics"]:
self.knowledge_base["topics"][concept] = {
"first_researched": datetime.now().isoformat(),
"research_count": 1,
"related_topics": [concept_a if concept == concept_b else concept_b]
}
else:
if concept_a if concept == concept_b else concept_b not in self.knowledge_base["topics"][concept]["related_topics"]:
self.knowledge_base["topics"][concept]["related_topics"].append(
concept_a if concept == concept_b else concept_b
)
self._save_knowledge_base()
return connection
def ask_knowledge_base(self, query: str) -> Dict:
"""
Query the accumulated knowledge base
Args:
query: Question about topics in the knowledge base
Returns:
Response based on accumulated knowledge
"""
# Create a temporary context from the knowledge base
context = {
"topics_researched": list(self.knowledge_base["topics"].keys()),
"research_count": len(self.knowledge_base["research_digests"]),
"code_analyses_count": len(self.knowledge_base["code_analyses"]),
"concept_connections_count": len(self.knowledge_base["concept_connections"]),
"last_updated": self.knowledge_base["metadata"]["last_updated"]
}
# Add recent research digests (limited to keep context manageable)
recent_digests = self.knowledge_base["research_digests"][-3:] if self.knowledge_base["research_digests"] else []
context["recent_research"] = recent_digests
# Build the prompt
prompt = f"""Query: {query}
Please answer based on the following knowledge base context:
{json.dumps(context, indent=2)}
If the knowledge base doesn't contain relevant information, please indicate this and suggest how we might research this topic.
"""
# Make the API call
response = self.client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research assistant with access to a personal knowledge base. Answer questions based on the accumulated knowledge."},
{"role": "user", "content": prompt}
],
model=self.model
)
content = response.choices[0].message.content
return {
"query": query,
"timestamp": datetime.now().isoformat(),
"response": content,
"knowledge_base_state": context
}
def generate_weekly_report(self) -> Dict:
"""
Generate a weekly summary of research and insights
Returns:
Weekly report of activity and key findings
"""
# Get weekly statistics
one_week_ago = datetime.now().isoformat() # Simplified, should subtract 7 days
# Count activities in the last week
recent_research = [d for d in self.knowledge_base["research_digests"]
if d["timestamp"] > one_week_ago]
recent_code = [c for c in self.knowledge_base["code_analyses"]
if c["timestamp"] > one_week_ago]
recent_connections = [c for c in self.knowledge_base["concept_connections"]
if c["timestamp"] > one_week_ago]
# Build context for the report
context = {
"period": "weekly",
"research_count": len(recent_research),
"code_analyses_count": len(recent_code),
"concept_connections_count": len(recent_connections),
"topics_explored": list(set([r["topic"] for r in recent_research])),
"recent_research": recent_research[:3], # Include only top 3
"recent_connections": recent_connections[:3]
}
# Build the prompt
prompt = f"""Generate a weekly research summary based on the following activity:
{json.dumps(context, indent=2)}
Please include:
1. Overview of research activity
2. Key findings and insights
3. Emerging patterns or trends
4. Suggestions for further exploration
Format as a concise weekly report.
"""
# Make the API call
response = self.client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research assistant generating a weekly summary of research activities and findings."},
{"role": "user", "content": prompt}
],
model=self.model
)
content = response.choices[0].message.content
report = {
"type": "weekly_report",
"timestamp": datetime.now().isoformat(),
"content": content,
"stats": context
}
return report
def get_kb_stats(self):
"""Get statistics about the knowledge base"""
return {
"topics_count": len(self.knowledge_base["topics"]),
"research_count": len(self.knowledge_base["research_digests"]),
"code_analyses_count": len(self.knowledge_base["code_analyses"]),
"concept_connections_count": len(self.knowledge_base["concept_connections"]),
"created": self.knowledge_base["metadata"]["created_at"],
"last_updated": self.knowledge_base["metadata"]["last_updated"],
"topics": list(self.knowledge_base["topics"].keys())
}
# Global variables for the Gradio app
para_instance = None
api_key_status = "Not Set"
# Helper functions for Gradio
def validate_api_key(api_key):
"""Validate Groq API key"""
global para_instance, api_key_status
if not api_key or len(api_key.strip()) < 10:
return "❌ Please enter a valid API key"
try:
# Try to initialize with minimal actions
client = Groq(api_key=api_key)
# Create PARA instance
para_instance = PersonalAIResearchAssistant(
api_key=api_key,
knowledge_base_path="para_knowledge.json"
)
api_key_status = "Valid ✅"
# Get KB stats
stats = para_instance.get_kb_stats()
kb_info = f"**Knowledge Base Stats:**\n\n" \
f"- Topics: {stats['topics_count']}\n" \
f"- Research Digests: {stats['research_count']}\n" \
f"- Code Analyses: {stats['code_analyses_count']}\n" \
f"- Concept Connections: {stats['concept_connections_count']}\n" \
f"- Last Updated: {stats['last_updated'][:10]}\n\n" \
f"**Topics Explored:** {', '.join(stats['topics'][:10])}" + \
("..." if len(stats['topics']) > 10 else "")
return f"✅ API Key Valid! PARA is ready.\n\n{kb_info}"
except Exception as e:
api_key_status = "Invalid ❌"
para_instance = None
return f"❌ Error: {str(e)}"
def check_api_key():
"""Check if API key is set"""
if para_instance is None:
return "Please set your Groq API key first"
return None
def update_model_selection(model_choice):
"""Update model selection"""
global para_instance
if para_instance:
para_instance.model = model_choice
return f"Model updated to: {model_choice}"
else:
return "Set API key first"
def research_topic(topic, include_domains, exclude_domains):
"""Research a topic with domain filters"""
# Check if API key is set
check_result = check_api_key()
if check_result:
return check_result
if not topic:
return "Please enter a topic to research"
# Process domain lists
include_list = [d.strip() for d in include_domains.split(",")] if include_domains else []
exclude_list = [d.strip() for d in exclude_domains.split(",")] if exclude_domains else []
try:
# Perform research
result = para_instance.research_digest(
topic=topic,
include_domains=include_list if include_list and include_list[0] else None,
exclude_domains=exclude_list if exclude_list and exclude_list[0] else None
)
# Format response
response = f"# Research: {topic}\n\n{result['content']}"
# Add tool usage info if available
if result.get("tool_usage"):
response += f"\n\n*Tool Usage Information Available*"
return response
except Exception as e:
return f"Error: {str(e)}"
def analyze_code(code_snippet, language, analysis_type):
"""Analyze code with Groq"""
# Check if API key is set
check_result = check_api_key()
if check_result:
return check_result
if not code_snippet:
return "Please enter code to analyze"
try:
# Perform analysis
result = para_instance.evaluate_code(
code_snippet=code_snippet,
language=language,
analysis_type=analysis_type
)
# Format response
response = f"# Code Analysis ({language}, {analysis_type})\n\n{result['content']}"
# Add tool usage info if available
if result.get("tool_usage"):
response += f"\n\n*Tool Usage Information Available*"
return response
except Exception as e:
return f"Error: {str(e)}"
def connect_concepts_handler(concept_a, concept_b):
"""Connect two concepts"""
# Check if API key is set
check_result = check_api_key()
if check_result:
return check_result
if not concept_a or not concept_b:
return "Please enter both concepts"
try:
# Find connections
result = para_instance.connect_concepts(
concept_a=concept_a,
concept_b=concept_b
)
# Format response
response = f"# Connection: {concept_a} & {concept_b}\n\n{result['content']}"
# Add tool usage info if available
if result.get("tool_usage"):
response += f"\n\n*Tool Usage Information Available*"
return response
except Exception as e:
return f"Error: {str(e)}"
def query_knowledge_base(query):
"""Query the knowledge base"""
# Check if API key is set
check_result = check_api_key()
if check_result:
return check_result
if not query:
return "Please enter a query"
try:
# Query knowledge base
result = para_instance.ask_knowledge_base(query=query)
# Format response
response = f"# Knowledge Base Query: {query}\n\n{result['response']}"
# Add KB stats
stats = result.get("knowledge_base_state", {})
if stats:
topics = stats.get("topics_researched", [])
response += f"\n\n*Knowledge Base contains {len(topics)} topics: {', '.join(topics[:5])}" + \
("..." if len(topics) > 5 else "") + "*"
return response
except Exception as e:
return f"Error: {str(e)}"
def generate_report_handler():
"""Generate weekly report"""
# Check if API key is set
check_result = check_api_key()
if check_result:
return check_result
try:
# Generate report
result = para_instance.generate_weekly_report()
# Format response
response = f"# Weekly Research Report\n\n{result['content']}"
return response
except Exception as e:
return f"Error: {str(e)}"
# Create the Gradio interface
def create_gradio_app():
# Define CSS for styling
css = """
.title-container {
text-align: center;
margin-bottom: 20px;
}
.container {
margin: 0 auto;
max-width: 1200px;
}
.tab-content {
padding: 20px;
border-radius: 10px;
background-color: #f9f9f9;
}
"""
with gr.Blocks(css=css, title="PARA - Personal AI Research Assistant") as app:
gr.Markdown(
"""
<div class="title-container">
# 🧠 PARA - Personal AI Research Assistant
*Powered by Groq's Compound Beta models for intelligent research*
</div>
"""
)
with gr.Row():
with gr.Column(scale=4):
api_key_input = gr.Textbox(
label="Groq API Key",
placeholder="Enter your Groq API key here...",
type="password"
)
with gr.Column(scale=2):
model_choice = gr.Radio(
["compound-beta", "compound-beta-mini"],
label="Model Selection",
value="compound-beta"
)
with gr.Column(scale=1):
validate_btn = gr.Button("Validate & Connect")
api_status = gr.Markdown("### Status: Not connected")
# Connect validation button
validate_btn.click(
fn=validate_api_key,
inputs=[api_key_input],
outputs=[api_status]
)
# Connect model selection
model_choice.change(
fn=update_model_selection,
inputs=[model_choice],
outputs=[api_status]
)
# Tabs for different features
with gr.Tabs() as tabs:
# Research Tab
with gr.Tab("Research Topics"):
with gr.Row():
with gr.Column(scale=1):
research_topic_input = gr.Textbox(
label="Research Topic",
placeholder="Enter a topic to research..."
)
with gr.Column(scale=1):
include_domains = gr.Textbox(
label="Include Domains (comma-separated)",
placeholder="arxiv.org, *.edu, example.com"
)
exclude_domains = gr.Textbox(
label="Exclude Domains (comma-separated)",
placeholder="wikipedia.org, twitter.com"
)
research_btn = gr.Button("Research Topic")
research_output = gr.Markdown("Results will appear here...")
research_btn.click(
fn=research_topic,
inputs=[research_topic_input, include_domains, exclude_domains],
outputs=[research_output]
)
gr.Markdown("""
### Examples:
- "Latest developments in quantum computing"
- "Climate change mitigation strategies"
- "Advancements in protein folding algorithms"
*Include domains like "arxiv.org, *.edu" for academic sources*
""")
# Code Analysis Tab
with gr.Tab("Code Analysis"):
code_input = gr.Code(
label="Code Snippet",
language="python",
lines=10
)
with gr.Row():
language_select = gr.Dropdown(
["python", "javascript", "java", "c++", "go", "rust", "typescript", "sql", "bash"],
label="Language",
value="python"
)
analysis_type = gr.Dropdown(
["full", "security", "performance", "style"],
label="Analysis Type",
value="full"
)
analyze_btn = gr.Button("Analyze Code")
analysis_output = gr.Markdown("Results will appear here...")
analyze_btn.click(
fn=analyze_code,
inputs=[code_input, language_select, analysis_type],
outputs=[analysis_output]
)
gr.Markdown("""
### Example Python Code:
```python
def fibonacci(n):
if n <= 0:
return []
elif n == 1:
return [0]
else:
result = [0, 1]
for i in range(2, n):
result.append(result[i-1] + result[i-2])
return result
print(fibonacci(10))
```
""")
# Concept Connections Tab
with gr.Tab("Connect Concepts"):
with gr.Row():
concept_a = gr.Textbox(
label="Concept A",
placeholder="First concept or field..."
)
concept_b = gr.Textbox(
label="Concept B",
placeholder="Second concept or field..."
)
connect_btn = gr.Button("Find Connections")
connection_output = gr.Markdown("Results will appear here...")
connect_btn.click(
fn=connect_concepts_handler,
inputs=[concept_a, concept_b],
outputs=[connection_output]
)
gr.Markdown("""
### Example Concept Pairs:
- "quantum computing" and "machine learning"
- "blockchain" and "supply chain management"
- "gene editing" and "ethics"
""")
# Knowledge Base Tab
with gr.Tab("Knowledge Base"):
kb_query = gr.Textbox(
label="Query Knowledge Base",
placeholder="Ask about topics in your knowledge base..."
)
kb_btn = gr.Button("Query Knowledge Base")
kb_output = gr.Markdown("Results will appear here...")
kb_btn.click(
fn=query_knowledge_base,
inputs=[kb_query],
outputs=[kb_output]
)
report_btn = gr.Button("Generate Weekly Report")
report_output = gr.Markdown("Report will appear here...")
report_btn.click(
fn=generate_report_handler,
inputs=[],
outputs=[report_output]
)
gr.Markdown("""
### Example Queries:
- "What have we learned about quantum computing?"
- "Summarize our research on AI safety"
- "What connections exist between the topics we've studied?"
""")
gr.Markdown("""
## About PARA
PARA (Personal AI Research Assistant) leverages Groq's compound models with agentic capabilities to help you research topics, analyze code, find connections between concepts, and build a personalized knowledge base.
**How it works:**
1. Set your Groq API key
2. Choose between compound-beta (more powerful) and compound-beta-mini (faster)
3. Use the tabs to access different features
4. Your research is automatically saved to a knowledge base for future reference
**Features:**
- Web search with domain filtering
- Code execution and analysis
- Concept connections discovery
- Persistent knowledge base
- Weekly research reports
""")
return app
# Launch the app
if __name__ == "__main__":
app = create_gradio_app()
app.launch()