File size: 4,615 Bytes
818bad6
 
 
 
 
7a25c1c
818bad6
 
ca29ecb
4287e6f
818bad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a25c1c
818bad6
 
 
4287e6f
 
 
ca29ecb
4287e6f
 
 
 
 
 
 
 
 
 
 
 
833bbde
818bad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a25c1c
 
 
818bad6
7a25c1c
 
818bad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4287e6f
818bad6
4287e6f
818bad6
 
 
291f44e
 
833bbde
ca29ecb
818bad6
291f44e
 
4287e6f
 
833bbde
4287e6f
833bbde
4287e6f
 
 
 
833bbde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
import PyPDF2
import openai
import faiss
import os
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import html
from docx import Document  # New import for working with docx files

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_file):
    reader = PyPDF2.PdfReader(pdf_file)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

# Function to generate embeddings for a piece of text
def get_embeddings(text, model="text-embedding-ada-002"):
    response = openai.Embedding.create(input=[text], model=model)
    return response['data'][0]['embedding']

# Function to search for similar content
def search_similar(query_embedding, index, stored_texts, top_k=3):
    distances, indices = index.search(np.array([query_embedding]), top_k)
    results = [(stored_texts[i], distances[0][idx]) for idx, i in enumerate(indices[0])]
    return results

# Function to generate a docx file with the response content
def generate_docx(response_content):
    doc = Document()
    
    # Adding title and response to the docx
    doc.add_heading('Course Query Response', 0)
    doc.add_heading('Answer:', level=1)
    doc.add_paragraph(response_content)
    
    # Save the document to a byte stream to allow for download in Streamlit
    from io import BytesIO
    doc_io = BytesIO()
    doc.save(doc_io)
    doc_io.seek(0)
    
    return doc_io

# Streamlit app starts here
st.title("Course Query Assistant")

# Input OpenAI API key
openai_api_key = st.text_input("Enter your OpenAI API key:", type="password")

if openai_api_key:
    openai.api_key = openai_api_key

    # Upload course materials
    uploaded_files = st.file_uploader("Upload Course Materials (PDFs)", type=["pdf"], accept_multiple_files=True)

    if uploaded_files:
        st.write("Processing uploaded course materials...")

        # Extract text and generate embeddings for all uploaded PDFs
        course_texts = []
        for uploaded_file in uploaded_files:
            text = extract_text_from_pdf(uploaded_file)
            course_texts.append(text)

        # Combine all course materials into one large text
        combined_text = " ".join(course_texts)

        # Split combined text into smaller chunks for embedding (max tokens ~1000)
        chunks = [combined_text[i:i+1000] for i in range(0, len(combined_text), 1000)]

        # Generate embeddings for all chunks
        embeddings = [get_embeddings(chunk) for chunk in chunks]

        # Convert the list of embeddings into a NumPy array (shape: [num_chunks, embedding_size])
        embeddings_np = np.array(embeddings).astype("float32")

        # Create a FAISS index for similarity search
        index = faiss.IndexFlatL2(len(embeddings_np[0]))  # Use the length of the embedding vectors for the dimension
        index.add(embeddings_np)

        st.write("Course materials have been processed and indexed.")

        # User query
        query = st.text_input("Enter your question about the course materials:")

        if query:
            # Generate embedding for the query
            query_embedding = get_embeddings(query)

            # Search for similar chunks in the FAISS index
            results = search_similar(query_embedding, index, chunks)

            # Create the context for the GPT prompt
            context = "\n".join([result[0] for result in results])
            modified_prompt = f"Context: {context}\n\nQuestion: {query}\n\nProvide a detailed answer based on the context."

            # Get the GPT-4 response
            response = openai.ChatCompletion.create(
                model="gpt-4o-mini",  # Update to GPT-4 (or your desired model)
                messages=[{"role": "user", "content": modified_prompt}]
            )

            # Get the response content
            response_content = response['choices'][0]['message']['content']

            # Display the response in Streamlit (Intelligent Reply)
            st.write("### Intelligent Reply:")
            st.write(response_content)

            # Generate a docx file based on the exact response content
            docx_file = generate_docx(response_content)

            # Provide the download button for the .docx file
            st.download_button(
                label="Download Response as DOCX",
                data=docx_file,
                file_name="course_query_response.docx",
                mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
            )