File size: 5,289 Bytes
f29a297
f1d75a2
 
 
ce8a794
 
 
 
 
 
 
 
 
 
 
 
f29a297
f1d75a2
ce8a794
 
f1d75a2
ce8a794
 
 
 
 
 
f1d75a2
 
 
 
ce8a794
 
 
 
 
f1d75a2
 
 
 
 
 
ce8a794
 
f1d75a2
ce8a794
f29a297
 
f1d75a2
ce8a794
f1d75a2
 
 
ce8a794
f1d75a2
 
 
 
ce8a794
 
 
 
 
 
f1d75a2
 
 
ce8a794
 
 
f1d75a2
 
ce8a794
f1d75a2
ce8a794
f1d75a2
ce8a794
f1d75a2
 
 
 
ce8a794
 
 
 
 
f1d75a2
 
 
ce8a794
f1d75a2
f29a297
 
 
f1d75a2
 
 
 
ce8a794
f1d75a2
 
f29a297
 
f1d75a2
f29a297
 
f1d75a2
f29a297
 
f1d75a2
 
 
f29a297
f1d75a2
f29a297
 
 
ce8a794
f1d75a2
f29a297
 
ce8a794
f1d75a2
 
ce8a794
 
 
f1d75a2
 
 
 
 
 
 
 
f29a297
 
 
f1d75a2
 
f29a297
 
f1d75a2
 
 
 
 
 
 
 
 
 
ce8a794
 
 
f1d75a2
f29a297
 
ce8a794
f1d75a2
 
 
 
 
ce8a794
 
 
f1d75a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gc
import os

# Set environment variables for cache management
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache/huggingface'
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'

def cleanup_memory():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()
    gc.collect()

def load_model():
    cleanup_memory()
    model_name = "Qwen/Qwen1.5-0.5B"  # Using smaller model
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True,
            use_fast=False,
            cache_dir="/tmp/.cache/huggingface"
        )
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",
            trust_remote_code=True,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            offload_folder="/tmp/offload",
            offload_state_dict=True,
            cache_dir="/tmp/.cache/huggingface"
        )
        return model, tokenizer
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        return None, None

# Initialize model and tokenizer
print("Loading model...")
model, tokenizer = load_model()
print("Model loaded successfully!")

def generate_code(prompt):
    try:
        cleanup_memory()
        
        # Prepare the prompt
        messages = [
            {"role": "system", "content": "You are an expert Python developer. Generate clean, efficient, and well-commented code based on the user's requirements. Only provide the code without any explanations."},
            {"role": "user", "content": f"Create a Python tool for the following requirement: {prompt}"}
        ]
        
        # Generate the response
        inputs = tokenizer.encode(str(messages), return_tensors="pt", truncation=True, max_length=512)
        inputs = inputs.to(model.device)
        
        outputs = model.generate(
            inputs,
            max_length=1024,
            temperature=0.7,
            top_p=0.9,
            repetition_penalty=1.1,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            num_return_sequences=1
        )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract code from response
        code_start = response.find("```python")
        code_end = response.find("```", code_start + 8) if code_start != -1 else -1
        
        if code_start != -1 and code_end != -1:
            code = response[code_start + 8:code_end].strip()
        else:
            # If no code block found, try to extract any Python-like code
            code = "\n".join([line for line in response.split("\n") 
                            if line.strip() and not line.startswith(("#", "//", "/*"))])
        
        cleanup_memory()
        return code
        
    except Exception as e:
        cleanup_memory()
        raise gr.Error(f"Code generation failed: {str(e)}")

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple")) as demo:
    gr.Markdown(
        """
        # 🛠️ AI Tool Builder by Syncmerce
        
        Generate Python code for your tools using AI. Simply describe what you want to build!
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(
                label="Tool Requirements",
                placeholder="Describe the tool you want to build... Be specific about features and functionality.",
                lines=4
            )
            with gr.Row():
                generate_btn = gr.Button("🔨 Generate Tool", variant="primary")
                clear_btn = gr.Button("🗑️ Clear")
        
        with gr.Column(scale=1):
            code_output = gr.Code(
                label="Generated Code",
                language="python",
                lines=20,
                show_label=True
            )
    
    # Add examples (keeping them simple to save memory)
    gr.Examples(
        examples=[
            ["Create a simple PDF text extractor"],
            ["Build a basic web scraper for product prices"],
            ["Create an image resizing tool"],
        ],
        inputs=prompt_input,
        outputs=code_output,
        fn=generate_code,
        cache_examples=True,
    )
    
    # Add event handlers
    generate_btn.click(
        fn=generate_code,
        inputs=prompt_input,
        outputs=code_output,
        api_name="generate"
    )
    
    clear_btn.click(
        fn=lambda: (None, None),
        inputs=None,
        outputs=[prompt_input, code_output],
        api_name="clear"
    )
    
    gr.Markdown(
        """
        ### Tips for better results:
        - Keep your requirements clear and concise
        - Specify input/output formats if needed
        - Mention any specific libraries you want to use
        """
    )

# Launch the app with optimized settings
demo.launch(
    share=True,
    enable_queue=True,
    show_error=True,
    server_name="0.0.0.0",
    server_port=7860,
    cache_examples=True,
    max_threads=4
)