Spaces:
Configuration error
Configuration error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.models import layers | |
class NonLocal2D(nn.Layer): | |
"""Basic Non-local module. | |
This model is the implementation of "Non-local Neural Networks" | |
(https://arxiv.org/abs/1711.07971) | |
Args: | |
in_channels (int): Channels of the input feature map. | |
reduction (int): Channel reduction ratio. Default: 2. | |
use_scale (bool): Whether to scale pairwise_weight by `1/sqrt(inter_channels)` when the mode is `embedded_gaussian`. Default: True. | |
sub_sample (bool): Whether to utilize max pooling after pairwise function. Default: False. | |
mode (str): Options are `gaussian`, `concatenation`, `embedded_gaussian` and `dot_product`. Default: embedded_gaussian. | |
""" | |
def __init__(self, | |
in_channels, | |
reduction=2, | |
use_scale=True, | |
sub_sample=False, | |
mode='embedded_gaussian'): | |
super(NonLocal2D, self).__init__() | |
self.in_channels = in_channels | |
self.reduction = reduction | |
self.use_scale = use_scale | |
self.sub_sample = sub_sample | |
self.mode = mode | |
if mode not in [ | |
'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation' | |
]: | |
raise ValueError( | |
"Mode should be in 'gaussian', 'concatenation','embedded_gaussian' or 'dot_product'." | |
) | |
self.inter_channels = max(in_channels // reduction, 1) | |
self.g = nn.Conv2D( | |
in_channels=self.in_channels, | |
out_channels=self.inter_channels, | |
kernel_size=1) | |
self.conv_out = layers.ConvBNReLU( | |
in_channels=self.inter_channels, | |
out_channels=self.in_channels, | |
kernel_size=1, | |
bias_attr=False) | |
if self.mode != "gaussian": | |
self.theta = nn.Conv2D( | |
in_channels=self.in_channels, | |
out_channels=self.inter_channels, | |
kernel_size=1) | |
self.phi = nn.Conv2D( | |
in_channels=self.in_channels, | |
out_channels=self.inter_channels, | |
kernel_size=1) | |
if self.mode == "concatenation": | |
self.concat_project = layers.ConvBNReLU( | |
in_channels=self.inter_channels * 2, | |
out_channels=1, | |
kernel_size=1, | |
bias_attr=False) | |
if self.sub_sample: | |
max_pool_layer = nn.MaxPool2D(kernel_size=(2, 2)) | |
self.g = nn.Sequential(self.g, max_pool_layer) | |
if self.mode != 'gaussian': | |
self.phi = nn.Sequential(self.phi, max_pool_layer) | |
else: | |
self.phi = max_pool_layer | |
def gaussian(self, theta_x, phi_x): | |
pairwise_weight = paddle.matmul(theta_x, phi_x) | |
pairwise_weight = F.softmax(pairwise_weight, axis=-1) | |
return pairwise_weight | |
def embedded_gaussian(self, theta_x, phi_x): | |
pairwise_weight = paddle.matmul(theta_x, phi_x) | |
if self.use_scale: | |
pairwise_weight /= theta_x.shape[-1]**0.5 | |
pairwise_weight = F.softmax(pairwise_weight, -1) | |
return pairwise_weight | |
def dot_product(self, theta_x, phi_x): | |
pairwise_weight = paddle.matmul(theta_x, phi_x) | |
pairwise_weight /= pairwise_weight.shape[-1] | |
return pairwise_weight | |
def concatenation(self, theta_x, phi_x): | |
h = theta_x.shape[2] | |
w = phi_x.shape[3] | |
theta_x = paddle.tile(theta_x, [1, 1, 1, w]) | |
phi_x = paddle.tile(phi_x, [1, 1, h, 1]) | |
concat_feature = paddle.concat([theta_x, phi_x], axis=1) | |
pairwise_weight = self.concat_project(concat_feature) | |
n, _, h, w = pairwise_weight.shape | |
pairwise_weight = paddle.reshape(pairwise_weight, [n, h, w]) | |
pairwise_weight /= pairwise_weight.shape[-1] | |
return pairwise_weight | |
def forward(self, x): | |
n, c, h, w = x.shape | |
g_x = paddle.reshape(self.g(x), [n, self.inter_channels, -1]) | |
g_x = paddle.transpose(g_x, [0, 2, 1]) | |
if self.mode == 'gaussian': | |
theta_x = paddle.reshape(x, [n, self.inter_channels, -1]) | |
theta_x = paddle.transpose(theta_x, [0, 2, 1]) | |
if self.sub_sample: | |
phi_x = paddle.reshape( | |
self.phi(x), [n, self.inter_channels, -1]) | |
else: | |
phi_x = paddle.reshape(x, [n, self.in_channels, -1]) | |
elif self.mode == 'concatenation': | |
theta_x = paddle.reshape( | |
self.theta(x), [n, self.inter_channels, -1, 1]) | |
phi_x = paddle.reshape(self.phi(x), [n, self.inter_channels, 1, -1]) | |
else: | |
theta_x = paddle.reshape( | |
self.theta(x), [n, self.inter_channels, -1]) | |
theta_x = paddle.transpose(theta_x, [0, 2, 1]) | |
phi_x = paddle.reshape(self.phi(x), [n, self.inter_channels, -1]) | |
pairwise_func = getattr(self, self.mode) | |
pairwise_weight = pairwise_func(theta_x, phi_x) | |
y = paddle.matmul(pairwise_weight, g_x) | |
y = paddle.transpose(y, [0, 2, 1]) | |
y = paddle.reshape(y, [n, self.inter_channels, h, w]) | |
output = x + self.conv_out(y) | |
return output | |