Spaces:
Runtime error
Runtime error
File size: 9,909 Bytes
bd5362c 3f0cefe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import cv2
import numpy as np
import mediapipe as mp
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import gradio as gr
from enum import Enum
import colorsys
from typing import Tuple, Dict
import torch.nn.functional as F
class ClothingType(Enum):
SHIRT = "shirt"
PANTS = "pants"
DRESS = "dress"
JACKET = "jacket"
class BodySegmentation(nn.Module):
def __init__(self):
super().__init__()
# Load DeepLab v3+ for semantic segmentation
self.model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True)
self.model.eval()
def forward(self, x):
return self.model(x)['out']
class VirtualTryOn:
def __init__(self):
# Initialize MediaPipe
self.mp_pose = mp.solutions.pose
self.mp_holistic = mp.solutions.holistic
self.pose = self.mp_pose.Pose(
static_image_mode=True,
model_complexity=2,
min_detection_confidence=0.5
)
self.holistic = self.mp_holistic.Holistic(
static_image_mode=True,
model_complexity=2,
min_detection_confidence=0.5
)
# Initialize body segmentation
self.segmentation = BodySegmentation()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.segmentation.to(self.device)
# Image transforms
self.transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def get_body_segmentation(self, image: np.ndarray) -> np.ndarray:
"""
Get precise body segmentation mask
"""
# Prepare image for model
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
input_tensor = self.transforms(pil_image).unsqueeze(0).to(self.device)
# Get segmentation mask
with torch.no_grad():
output = self.segmentation(input_tensor)
mask = torch.argmax(output, dim=1).squeeze().cpu().numpy()
# Person class is typically index 15 in COCO dataset
return (mask == 15).astype(np.uint8)
def estimate_lighting(self, image: np.ndarray) -> Dict[str, float]:
"""
Estimate lighting conditions from the image
"""
# Convert to HSV
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Get average brightness and saturation
brightness = np.mean(hsv[:, :, 2])
saturation = np.mean(hsv[:, :, 1])
return {
'brightness': brightness / 255.0,
'saturation': saturation / 255.0
}
def adjust_clothing_color(self, clothing: np.ndarray,
lighting_params: Dict[str, float]) -> np.ndarray:
"""
Adjust clothing colors to match lighting conditions
"""
# Convert to HSV for easier adjustment
hsv = cv2.cvtColor(clothing, cv2.COLOR_BGR2HSV).astype(np.float32)
# Adjust brightness and saturation
hsv[:, :, 2] *= lighting_params['brightness']
hsv[:, :, 1] *= lighting_params['saturation']
# Ensure values are within valid range
hsv = np.clip(hsv, 0, 255).astype(np.uint8)
# Convert back to BGR
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def get_clothing_dimensions(self, landmarks, image_shape: Tuple[int, int],
clothing_type: ClothingType) -> Dict:
"""
Get clothing dimensions based on body landmarks and clothing type
"""
height, width = image_shape[:2]
if clothing_type in [ClothingType.SHIRT, ClothingType.JACKET]:
# For upper body clothing
left_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_SHOULDER]
right_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.RIGHT_SHOULDER]
left_hip = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_HIP]
shoulder_width = abs(right_shoulder.x - left_shoulder.x) * width
torso_height = abs(left_shoulder.y - left_hip.y) * height
return {
'top_left': (
int(min(left_shoulder.x, right_shoulder.x) * width),
int(left_shoulder.y * height)
),
'width': int(shoulder_width * 1.3),
'height': int(torso_height * 1.1)
}
elif clothing_type == ClothingType.PANTS:
# For pants
left_hip = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_HIP]
right_hip = landmarks.landmark[self.mp_pose.PoseLandmark.RIGHT_HIP]
left_ankle = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_ANKLE]
hip_width = abs(right_hip.x - left_hip.x) * width
leg_height = abs(left_hip.y - left_ankle.y) * height
return {
'top_left': (
int(min(left_hip.x, right_hip.x) * width),
int(left_hip.y * height)
),
'width': int(hip_width * 1.5),
'height': int(leg_height * 1.05)
}
elif clothing_type == ClothingType.DRESS:
# For dresses
left_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_SHOULDER]
right_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.RIGHT_SHOULDER]
left_knee = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_KNEE]
shoulder_width = abs(right_shoulder.x - left_shoulder.x) * width
dress_height = abs(left_shoulder.y - left_knee.y) * height
return {
'top_left': (
int(min(left_shoulder.x, right_shoulder.x) * width),
int(left_shoulder.y * height)
),
'width': int(shoulder_width * 1.4),
'height': int(dress_height * 1.1)
}
def try_on(self, person_image: np.ndarray, clothing_image: np.ndarray,
clothing_type: ClothingType) -> np.ndarray:
"""
Enhanced try-on method with support for different clothing types
"""
# Get body segmentation
body_mask = self.get_body_segmentation(person_image)
# Get pose landmarks
results = self.pose.process(cv2.cvtColor(person_image, cv2.COLOR_BGR2RGB))
if not results.pose_landmarks:
raise ValueError("No person detected in the image")
# Estimate lighting conditions
lighting_params = self.estimate_lighting(person_image)
# Adjust clothing colors
adjusted_clothing = self.adjust_clothing_color(clothing_image, lighting_params)
# Get clothing dimensions
dimensions = self.get_clothing_dimensions(
results.pose_landmarks,
person_image.shape,
clothing_type
)
# Resize clothing
clothing_resized = cv2.resize(
adjusted_clothing,
(dimensions['width'], dimensions['height']),
interpolation=cv2.INTER_AREA
)
# Create alpha mask for smooth blending
if clothing_resized.shape[2] == 4:
alpha_channel = clothing_resized[:, :, 3] / 255.0
else:
alpha_channel = np.ones(clothing_resized.shape[:2])
alpha_3channel = np.stack([alpha_channel] * 3, axis=2)
# Calculate placement coordinates
y1 = dimensions['top_left'][1]
y2 = y1 + dimensions['height']
x1 = dimensions['top_left'][0]
x2 = x1 + dimensions['width']
# Ensure coordinates are within image boundaries
y1 = max(0, y1)
y2 = min(person_image.shape[0], y2)
x1 = max(0, x1)
x2 = min(person_image.shape[1], x2)
# Apply body mask to improve blending
body_mask_roi = body_mask[y1:y2, x1:x2]
alpha_3channel = alpha_3channel * np.expand_dims(body_mask_roi, axis=2)
# Blend images
roi = person_image[y1:y2, x1:x2]
clothing_rgb = clothing_resized[:, :, :3]
blended = (1 - alpha_3channel) * roi + alpha_3channel * clothing_rgb[:roi.shape[0], :roi.shape[1]]
result = person_image.copy()
result[y1:y2, x1:x2] = blended
return result
def create_gradio_interface():
def process_images(person_img, clothing_img, clothing_type):
try_on = VirtualTryOn()
# Convert clothing type string to enum
clothing_type_enum = ClothingType(clothing_type.lower())
# Process the images
result = try_on.try_on(person_img, clothing_img, clothing_type_enum)
return result
# Create the interface
iface = gr.Interface(
fn=process_images,
inputs=[
gr.Image(label="Upload Person Image"),
gr.Image(label="Upload Clothing Image"),
gr.Dropdown(
choices=["Shirt", "Pants", "Dress", "Jacket"],
label="Select Clothing Type"
)
],
outputs=gr.Image(label="Result"),
title="Virtual Try-On System",
description="Upload a person's image and a clothing item to see how it looks!",
examples=[
["person.jpg", "shirt.png", "Shirt"],
["person.jpg", "pants.png", "Pants"]
]
)
return iface
if __name__ == "__main__":
iface = create_gradio_interface()
iface.launch() |