Update app.py
Browse files
app.py
CHANGED
@@ -8,11 +8,23 @@ import threading
|
|
8 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
|
|
11 |
# Function to process image and generate mask
|
12 |
def process_image(image, prompt):
|
13 |
inputs = processor(
|
14 |
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
15 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
with torch.no_grad():
|
17 |
outputs = model(**inputs)
|
18 |
preds = outputs.logits
|
@@ -30,16 +42,6 @@ def process_image(image, prompt):
|
|
30 |
|
31 |
return mask
|
32 |
|
33 |
-
# Function to get masks from positive or negative prompts
|
34 |
-
def get_masks(prompts, img, threshold):
|
35 |
-
prompts = prompts.split(",")
|
36 |
-
masks = []
|
37 |
-
for prompt in prompts:
|
38 |
-
mask = process_image(img, prompt)
|
39 |
-
mask = mask > threshold
|
40 |
-
masks.append(mask)
|
41 |
-
|
42 |
-
return masks
|
43 |
|
44 |
# Function to extract image using positive and negative prompts
|
45 |
def extract_image(pos_prompts, neg_prompts, img, threshold):
|
|
|
8 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
+
# Function to process image and generate mask
|
12 |
# Function to process image and generate mask
|
13 |
def process_image(image, prompt):
|
14 |
inputs = processor(
|
15 |
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
16 |
)
|
17 |
+
|
18 |
+
# Extract image tensor and normalize it
|
19 |
+
image_tensor = inputs["pixel_values"].squeeze().permute(1, 2, 0).cpu().numpy()
|
20 |
+
image_tensor = (image_tensor * 255).astype(np.uint8)
|
21 |
+
image_tensor = Image.fromarray(image_tensor)
|
22 |
+
image_tensor = image_tensor.convert("RGB")
|
23 |
+
|
24 |
+
# Perform CLIPSeg processing
|
25 |
+
inputs = processor(
|
26 |
+
text=prompt, images=image_tensor, padding="max_length", return_tensors="pt"
|
27 |
+
)
|
28 |
with torch.no_grad():
|
29 |
outputs = model(**inputs)
|
30 |
preds = outputs.logits
|
|
|
42 |
|
43 |
return mask
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Function to extract image using positive and negative prompts
|
47 |
def extract_image(pos_prompts, neg_prompts, img, threshold):
|