Spaces:
Sleeping
Sleeping
File size: 12,240 Bytes
e93d13e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from flask import Flask, render_template, Response, jsonify
import cv2
import time
import numpy as np
import threading
import requests
import os
import atexit
from twilio.rest import Client
from datetime import datetime
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
app = Flask(__name__)
# For deployment in Hugging Face Spaces, we'll use environment variables with fallbacks
TWILIO_ACCOUNT_SID = os.getenv("TWILIO_ACCOUNT_SID", "AC3988de38b87b0de231ee7704d9e6dafb")
TWILIO_AUTH_TOKEN = os.getenv("TWILIO_AUTH_TOKEN", "2a282eeb0a72c2a2bec9a1331d3cc803")
TWILIO_FROM_NUMBER = os.getenv("TWILIO_FROM_NUMBER", "+19046820459")
TWILIO_TO_NUMBER = os.getenv("TWILIO_TO_NUMBER", "+918999094929")
TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN", "7289300782:AAF0qzc38BQ1S5a4kyXj7F02kUjIswb1YDY")
TELEGRAM_CHAT_ID = os.getenv("TELEGRAM_CHAT_ID", "6186075118")
ROBOFLOW_API_KEY = os.getenv("ROBOFLOW_API_KEY", "IkQtIl5NGRTc0llwyIMo")
SITE_LOCATION = os.getenv("SITE_LOCATION", "1234 Main St, City, Country")
# Initialize webcam or use a placeholder for Hugging Face
# In HF Spaces, we'll use a dummy camera for demo purposes
try:
camera = cv2.VideoCapture(0)
if not camera.isOpened():
raise Exception("Could not open camera")
except Exception as e:
print(f"Camera error: {e}. Using demo mode.")
USE_DEMO_MODE = True
# Create a black frame as placeholder
demo_frame = np.zeros((480, 640, 3), dtype=np.uint8)
# Add text to the frame
cv2.putText(
demo_frame,
"Demo Mode - No Camera Access",
(50, 240),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2
)
else:
USE_DEMO_MODE = False
# Initialize the Roboflow Inference Client
try:
from inference_sdk import InferenceHTTPClient
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key=ROBOFLOW_API_KEY
)
except ImportError:
print("Inference SDK not available. Using placeholder detection.")
CLIENT = None
# Detection settings
DETECTION_INTERVAL = 3 # seconds
ALERT_INTERVAL = 300 # seconds
last_alert_time = 0
# Cooldown for updating detection counts (in seconds)
DETECTION_COOLDOWN = 10
last_count_time = 0
# Define the classes for this project
PROJECT_CLASSES = [
"Balls", "Bird", "Cat", "Dog", "Elephant", "Pig", "Tikus",
"apple", "bean", "bunny", "cattle", "cute", "leopard", "lion",
"rat", "standpig", "tiger", "Person"
]
# Store detection statistics
detection_counts = {cls: 0 for cls in PROJECT_CLASSES}
# Alert history
alert_history = []
def cleanup():
"""Release the camera when the application exits."""
global camera
if not USE_DEMO_MODE and camera is not None and camera.isOpened():
camera.release()
print("Camera released.")
# Register cleanup function to run on exit
atexit.register(cleanup)
def make_call():
"""Initiate a call using Twilio."""
try:
client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN)
call = client.calls.create(
url="http://demo.twilio.com/docs/voice.xml",
to=TWILIO_TO_NUMBER,
from_=TWILIO_FROM_NUMBER
)
print("Call initiated. Call SID:", call.sid)
return True
except Exception as e:
print(f"Failed to make call: {e}")
return False
def send_telegram_message(image, caption):
"""Send an alert image with caption via Telegram."""
try:
send_photo_url = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}/sendPhoto"
ret, buffer = cv2.imencode('.jpg', image)
if not ret:
print("Failed to encode image.")
return False
files = {"photo": ("alert.jpg", buffer.tobytes(), "image/jpeg")}
data = {"chat_id": TELEGRAM_CHAT_ID, "caption": caption}
response = requests.post(send_photo_url, data=data, files=files)
if response.status_code == 200:
print("Telegram alert sent.")
return True
else:
print(f"Failed to send Telegram alert. Status code: {response.status_code}")
return False
except Exception as e:
print(f"Error sending Telegram message: {e}")
return False
def play_siren():
"""Play a siren sound alert - this won't work in HF Spaces."""
print("Alert sound would play here (disabled in HF Spaces)")
def process_frame(frame):
"""Process a frame for object detection."""
global detection_counts, last_count_time
if CLIENT is None:
# Generate demo predictions if Roboflow isn't available
predictions = [
{
'class': 'Person',
'confidence': 0.92,
'x': frame.shape[1] // 2,
'y': frame.shape[0] // 2,
'width': 100,
'height': 200
}
]
detected_objects = {'Person': 1}
return predictions, detected_objects
# Save the frame temporarily for inference
image_path = "/tmp/temp_frame.jpg"
cv2.imwrite(image_path, frame)
try:
# Perform object detection using Roboflow
result = CLIENT.infer(image_path, model_id="yolov8n-640")
predictions = result.get('predictions', [])
except Exception as e:
print(f"Error during inference: {e}")
predictions = []
detected_objects = {}
current_frame_time = time.time()
# Only update detection counts if the cooldown period has passed
if current_frame_time - last_count_time >= DETECTION_COOLDOWN:
for obj in predictions:
class_name = obj['class']
# Perform case-insensitive matching
for project_class in PROJECT_CLASSES:
if class_name.lower() == project_class.lower():
detection_counts[project_class] = detection_counts.get(project_class, 0) + 1
detected_objects[project_class] = detected_objects.get(project_class, 0) + 1
break
last_count_time = current_frame_time
# Clean up temporary file
try:
if os.path.exists(image_path):
os.remove(image_path)
except Exception as e:
print(f"Failed to remove temporary file: {e}")
return predictions, detected_objects
def gen_frames():
"""Video streaming with object detection."""
global last_alert_time, alert_history
while True:
if USE_DEMO_MODE:
# In demo mode, generate a dynamic demo frame
frame = demo_frame.copy()
# Add a moving element to show it's active
t = time.time()
x = int(320 + 200 * np.sin(t))
y = int(240 + 100 * np.cos(t))
cv2.circle(frame, (x, y), 20, (0, 165, 255), -1)
# Generate some random detections for demo
if time.time() % 10 < 5: # Every 5 seconds
predictions = [
{
'class': 'Person',
'confidence': 0.92,
'x': x,
'y': y,
'width': 100,
'height': 200
}
]
else:
predictions = []
detected_objects = {'Person': 1} if predictions else {}
else:
# Normal camera mode
success, frame = camera.read()
if not success:
print("Failed to capture frame from camera")
time.sleep(0.1)
continue
# Process frame for object detection
predictions, detected_objects = process_frame(frame)
# Draw detections on the frame
for obj in predictions:
x, y, w, h = int(obj['x']), int(obj['y']), int(obj['width']), int(obj['height'])
class_name = obj['class']
confidence = obj['confidence']
# Use different colors based on the class (case-insensitive check)
color = (0, 255, 0) # Default green
if class_name.lower() == "person":
color = (0, 0, 255) # Red for persons
# Draw rectangle around the object
cv2.rectangle(frame, (x - w // 2, y - h // 2), (x + w // 2, y + h // 2), color, 2)
# Add a label with class name and confidence
label = f"{class_name}: {confidence:.2f}"
(text_width, text_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
cv2.rectangle(frame, (x - w // 2, y - h // 2 - text_height - 5),
(x - w // 2 + text_width, y - h // 2), color, -1)
cv2.putText(frame, label, (x - w // 2, y - h // 2 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Alert if any object from the project classes is detected and the alert interval has passed
current_time = time.time()
if detected_objects and (current_time - last_alert_time >= ALERT_INTERVAL):
# Get the current date and time
detected_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Create a caption listing the detected classes with timestamp and location
caption = (
f"Alert! Detected: {', '.join(detected_objects.keys())}\n"
f"Time: {detected_time}\n"
f"Location: {SITE_LOCATION}"
)
# Add to alert history
alert_info = {
"time": detected_time,
"objects": list(detected_objects.keys()),
"counts": detected_objects
}
alert_history.append(alert_info)
# Keep only the last 10 alerts
if len(alert_history) > 10:
alert_history.pop(0)
# In a real environment, we would start alert threads
# In HF Spaces, we'll just log the alerts
print(f"Alert triggered: {caption}")
last_alert_time = current_time
# Add timestamp to frame
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
cv2.putText(frame, timestamp, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
# Encode the frame for streaming
ret, buffer = cv2.imencode('.jpg', frame)
if not ret:
continue
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + buffer.tobytes() + b'\r\n')
# Add a small delay to control frame rate
time.sleep(0.05)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/video_feed')
def video_feed():
return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/detection_data')
def detection_data():
"""Return the current detection counts as JSON."""
filtered_counts = {k: v for k, v in detection_counts.items() if v > 0}
return jsonify(filtered_counts)
@app.route('/alert_history')
def get_alert_history():
"""Return the history of alerts as JSON."""
return jsonify(alert_history)
@app.route('/reset_counts')
def reset_counts():
"""Reset all detection counts."""
global detection_counts
detection_counts = {cls: 0 for cls in PROJECT_CLASSES}
return jsonify({"status": "success", "message": "Detection counts reset"})
# Add a dummy route for Hugging Face Spaces healthcheck
@app.route('/healthcheck')
def healthcheck():
return jsonify({"status": "healthy"})
if __name__ == '__main__':
# Get port from environment (needed for Hugging Face Spaces)
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port) |