karimouda's picture
Update submission
f81f755
raw
history blame
5.26 kB
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from huggingface_hub import hf_hub_download
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
#base_model: str,
#revision: str,
#precision: str,
#weight_type: str,
#model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
#precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): #revision=revision
return styled_error("Model does not exist on HF Hub. Please select a valid model name.")
"""
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
"""
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model)#, revision=revision
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info)#, precision=precision
if model_size>30:
return styled_error("Due to limited GPU availability, evaluations for models larger than 30B are currently not automated. Please open a ticket here so we do it manually for you. https://huggingface.co/spaces/silma-ai/Arabic-Broad-Leaderboard/discussions")
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Preparing a new eval")
eval_entry = {
"model": model,
"model_sha": model_info.sha,
#"base_model": base_model,
#"revision": revision,
#"precision": precision,
#"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
#"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
#"private": False,
}
# Check for duplicate submission
if f"{model}" in REQUESTED_MODELS: #_{revision}_{precision}
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request.json" #_{precision}_{weight_type}
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
##update queue file
queue_file_path = "./eval_queue.json"
## download queue_file from repo using HuggingFace hub API, update it and upload again
queue_file = hf_hub_download(
filename=queue_file_path,
repo_id=QUEUE_REPO,
repo_type="space",
token=TOKEN
)
with open(queue_file, "r") as f:
queue_data = json.load(f)
if len(queue_data) == 0:
queue_data = []
queue_data.append(eval_entry)
print(queue_data)
#with open(queue_file, "w") as f:
# json.dump(queue_data, f)
print("Updating eval queue file")
API.upload_file(
path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"),
path_in_repo=queue_file_path,
repo_id=QUEUE_REPO,
repo_type="space",
commit_message=f"Add {model} to eval queue"
)
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path,
repo_id=QUEUE_REPO,
repo_type="space",
commit_message=f"Add {model} request file",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an 15 minutes for the model to show in the PENDING list."
)