File size: 20,482 Bytes
f340e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
#%%
import xarray as xr
from siphon.catalog import TDSCatalog
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.colors as mcolors
import streamlit as st
import datetime
import matplotlib.dates as mdates
from scipy.interpolate import griddata
import folium
import branca.colormap as cm
@st.cache_data(ttl=60)
def find_latest_meps_file():
# The MEPS dataset: https://github.com/metno/NWPdocs/wiki/MEPS-dataset
today = datetime.datetime.today()
catalog_url = f"https://thredds.met.no/thredds/catalog/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}/catalog.xml"
file_url_base = f"https://thredds.met.no/thredds/dodsC/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}"
# Get the datasets from the catalog
catalog = TDSCatalog(catalog_url)
datasets = [s for s in catalog.datasets if "meps_det_ml" in s]
file_path = f"{file_url_base}/{sorted(datasets)[-1]}"
return file_path
@st.cache_data()
def load_meps_for_location(file_path=None, altitude_min=0, altitude_max=3000):
"""
file_path=None
altitude_min=0
altitude_max=3000
"""
if file_path is None:
file_path = find_latest_meps_file()
x_range= "[220:1:300]"
y_range= "[420:1:500]"
time_range = "[0:1:66]"
hybrid_range = "[25:1:64]"
height_range = "[0:1:0]"
params = {
"x": x_range,
"y": y_range,
"time": time_range,
"hybrid": hybrid_range,
"height": height_range,
"longitude": f"{y_range}{x_range}",
"latitude": f"{y_range}{x_range}",
"air_temperature_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
"ap" : f"{hybrid_range}",
"b" : f"{hybrid_range}",
"surface_air_pressure": f"{time_range}{height_range}{y_range}{x_range}",
"x_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
"y_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
}
path = f"{file_path}?{','.join(f'{k}{v}' for k, v in params.items())}"
subset = xr.open_dataset(path, cache=True)
subset.load()
#%% get geopotential
time_range_sfc = "[0:1:0]"
surf_params = {
"x": x_range,
"y": y_range,
"time": f"{time_range}",
"surface_geopotential": f"{time_range_sfc}[0:1:0]{y_range}{x_range}",
"air_temperature_0m": f"{time_range}[0:1:0]{y_range}{x_range}",
}
file_path_surf = f"{file_path.replace('meps_det_ml','meps_det_sfc')}?{','.join(f'{k}{v}' for k, v in surf_params.items())}"
# Load surface parameters and merge into the main dataset
surf = xr.open_dataset(file_path_surf, cache=True)
# Convert the surface geopotential to elevation
elevation = (surf.surface_geopotential / 9.80665).squeeze()
#elevation.plot()
subset['elevation'] = elevation
air_temperature_0m = surf.air_temperature_0m.squeeze()
subset['air_temperature_0m'] = air_temperature_0m
# subset.elevation.plot()
#%%
def hybrid_to_height(ds):
"""
ds = subset
"""
# Constants
R = 287.05 # Gas constant for dry air
g = 9.80665 # Gravitational acceleration
# Calculate the pressure at each level
p = ds['ap'] + ds['b'] * ds['surface_air_pressure']#.mean("ensemble_member")
# Get the temperature at each level
T = ds['air_temperature_ml']#.mean("ensemble_member")
# Calculate the height difference between each level and the surface
dp = ds['surface_air_pressure'] - p # Pressure difference
dT = T - T.isel(hybrid=-1) # Temperature difference relative to the surface
dT_mean = 0.5 * (T + T.isel(hybrid=-1)) # Mean temperature
# Calculate the height using the hypsometric equation
dz = (R * dT_mean / g) * np.log(ds['surface_air_pressure'] / p)
return dz
altitude = hybrid_to_height(subset).mean("time").squeeze().mean("x").mean("y")
subset = subset.assign_coords(altitude=('hybrid', altitude.data))
subset = subset.swap_dims({'hybrid': 'altitude'})
# filter subset on altitude ranges
subset = subset.where((subset.altitude >= altitude_min) & (subset.altitude <= altitude_max), drop=True).squeeze()
wind_speed = np.sqrt(subset['x_wind_ml']**2 + subset['y_wind_ml']**2)
subset = subset.assign(wind_speed=(('time', 'altitude','y','x'), wind_speed.data))
subset['thermal_temp_diff'] = compute_thermal_temp_difference(subset)
#subset = subset.assign(thermal_temp_diff=(('time', 'altitude','y','x'), thermal_temp_diff.data))
# Find the indices where the thermal temperature difference is zero or negative
# Create tiny value at ground level to avoid finding the ground as the thermal top
thermal_temp_diff = subset['thermal_temp_diff']
thermal_temp_diff = thermal_temp_diff.where(
(thermal_temp_diff.sum("altitude")>0)|(subset['altitude']!=subset.altitude.min()),
thermal_temp_diff + 1e-6)
indices = (thermal_temp_diff > 0).argmax(dim="altitude")
# Get the altitudes corresponding to these indices
thermal_top = subset.altitude[indices]
subset = subset.assign(thermal_top=(('time', 'y', 'x'), thermal_top.data))
subset = subset.set_coords(["latitude", "longitude"])
return subset
#%%
def compute_thermal_temp_difference(subset):
lapse_rate = 0.0098
ground_temp = subset.air_temperature_0m-273.3
air_temp = (subset['air_temperature_ml']-273.3)#.ffill(dim='altitude')
# dimensions
# 'air_temperature_ml' altitude: 4 y: 3, x: 3
# 'elevation' y: 3 x: 3
# 'altitude' altitude: 4
# broadcast ground temperature to all altitudes, but let it decrease by lapse rate
altitude_diff = subset.altitude - subset.elevation
altitude_diff = altitude_diff.where(altitude_diff >= 0, 0)
temp_decrease = lapse_rate * altitude_diff
ground_parcel_temp = ground_temp - temp_decrease
thermal_temp_diff = (ground_parcel_temp - air_temp).clip(min=0)
return thermal_temp_diff
def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8):
# build colorscale for thermal temperature difference
wind_colors = ["grey", "blue", "green", "yellow", "red", "purple"]
wind_positions = [0, 0.5, 3, 7, 12, 20] # transition points
wind_positions_norm = [i/wind_max for i in wind_positions]
# Create the colormap
windcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(wind_positions_norm, wind_colors)))
# build colorscale for thermal temperature difference
thermal_colors = ['white', 'white', 'red', 'violet', "darkviolet"]
thermal_positions = [0, 0.2, 2.0, 4, 8]
thermal_positions_norm = [i/tempdiff_max for i in thermal_positions]
# Create the colormap
tempcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(thermal_positions_norm, thermal_colors)))
return windcolors, tempcolors
@st.cache_data(ttl=60)
def create_wind_map(_subset, x_target, y_target, altitude_max=4000, date_start=None, date_end=None):
"""
altitude_max = 3000
date_start = None
date_end = None
"""
subset = _subset
wind_min, wind_max = 0.3, 20
tempdiff_min, tempdiff_max = 0, 8
windcolors, tempcolors = wind_and_temp_colorscales(wind_max, tempdiff_max)
# Filter location
windplot_data = subset.sel(x=x_target, y=y_target, method="nearest")
# Filter time periods and altitudes
if date_start is None:
date_start = datetime.datetime.fromtimestamp(subset.time.min().values.astype('int64') / 1e9)
if date_end is None:
date_end = datetime.datetime.fromtimestamp(subset.time.max().values.astype('int64') / 1e9)
new_timestamps = pd.date_range(date_start, date_end, 20)
new_altitude = np.arange(windplot_data.elevation.mean(), altitude_max, altitude_max/20)
windplot_data = windplot_data.interp(altitude=new_altitude, time=new_timestamps)
# BUILD PLOT
fig, ax = plt.subplots(figsize=(15, 7))
contourf = ax.contourf(windplot_data.time, windplot_data.altitude, windplot_data.thermal_temp_diff.T, cmap=tempcolors, alpha=0.5, vmin=0, vmax=8)
fig.colorbar(contourf, ax=ax, label='Thermal Temperature Difference (°C)', pad=0.01, orientation='vertical')
# Wind quiver plot
quiverplot = windplot_data.plot.quiver(
x='time', y='altitude', u='x_wind_ml', v='y_wind_ml',
hue="wind_speed",
cmap = windcolors,
vmin=wind_min, vmax=wind_max,
alpha=0.5,
pivot="middle",# headwidth=4, headlength=6,
ax=ax # Add this line to plot on the created axes
)
quiverplot.colorbar.set_label("Wind Speed [m/s]")
quiverplot.colorbar.pad = 0.01
# fill bottom with brown color
plt.ylim(bottom=0)
ax.fill_between(windplot_data.time, 0, windplot_data.elevation.mean(), color="brown", alpha=0.5)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
# normalize wind speed for color mapping
norm = plt.Normalize(wind_min, wind_max)
# add numerical labels to the plot
for x, t in enumerate(windplot_data.time.values):
for y, alt in enumerate(windplot_data.altitude.values):
color = windcolors(norm(windplot_data.wind_speed[x,y]))
ax.text(t+5, alt+20, f"{windplot_data.wind_speed[x,y]:.1f}", size=6, color=color)
plt.title(f"Wind and thermals in point starting at {date_start.strftime('%Y-%m-%d')} (UTC)")
plt.yscale("linear")
return fig
#%%
@st.cache_data(ttl=7200)
def create_sounding(_subset, date, hour, x_target, y_target, altitude_max=3000):
"""
date = "2024-05-12"
hour = "15"
x_target = 5
y_target = 5
"""
subset = _subset
lapse_rate = 0.0098 # in degrees Celsius per meter
subset = subset.where(subset.altitude< altitude_max,drop=True)
# Create a figure object
fig, ax = plt.subplots()
# Define the dry adiabatic lapse rate
def add_dry_adiabatic_lines(ds):
# Define a range of temperatures at sea level
T0 = np.arange(-40, 40, 5) # temperatures from -40°C to 40°C in steps of 10°C
# Create a 2D grid of temperatures and altitudes
T0, altitude = np.meshgrid(T0, ds.altitude)
# Calculate the temperatures at each altitude
T_adiabatic = T0 - lapse_rate * altitude
# Plot the dry adiabatic lines
for i in range(T0.shape[1]):
ax.plot(T_adiabatic[:, i], ds.altitude, 'r:', alpha=0.5)
# Plot the actual temperature profiles
time_str = f"{date} {hour}:00:00"
# find x and y values cloeset to given latitude and longitude
ds_time = subset.sel(time=time_str, x=x_target,y=y_target, method="nearest")
T = (ds_time['air_temperature_ml'].values-273.3) # in degrees Celsius
ax.plot(T, ds_time.altitude, label=f"temp {pd.to_datetime(time_str).strftime('%H:%M')}")
# Define the surface temperature
T_surface = T[-1]+3
T_parcel = T_surface - lapse_rate * ds_time.altitude
# Plot the temperature of the rising air parcel
filter = T_parcel>T
ax.plot(T_parcel[filter], ds_time.altitude[filter], label='Rising air parcel',color="green")
add_dry_adiabatic_lines(ds_time)
ax.set_xlabel('Temperature (°C)')
ax.set_ylabel('Altitude (m)')
ax.set_title(f'Temperature Profile and Dry Adiabatic Lapse Rate for {date} {hour}:00')
ax.legend(title='Time')
xmin, xmax = ds_time['air_temperature_ml'].min().values-273.3, ds_time['air_temperature_ml'].max().values-273.3+3
ax.set_xlim(xmin, xmax)
ax.grid(True)
# Return the figure object
return fig
@st.cache_data(ttl=7200)
def build_map_overlays(_subset, date=None, hour=None):
"""
date = "2024-05-13"
hour = "15"
x_target=None
y_target=None
"""
subset = _subset
# Get the latitude and longitude values from the dataset
latitude_values = subset.latitude.values.flatten()
longitude_values = subset.longitude.values.flatten()
thermal_top_values = subset.thermal_top.sel(time=f"{date}T{hour}").values.flatten()
#thermal_top_values = subset.elevation.mean("altitude").values.flatten()
# Convert the irregular grid data into a regular grid
step_lon, step_lat = subset.longitude.diff("x").quantile(0.1).values, subset.latitude.diff("y").quantile(0.1).values
grid_x, grid_y = np.mgrid[min(latitude_values):max(latitude_values):step_lat, min(longitude_values):max(longitude_values):step_lon]
grid_z = griddata((latitude_values, longitude_values), thermal_top_values, (grid_x, grid_y), method='linear')
grid_z = np.nan_to_num(grid_z, copy=False, nan=0)
# Normalize the grid data to a range suitable for image display
heightcolor = cm.LinearColormap(
colors = ['white', 'white', 'green', 'yellow', 'orange','red', 'darkblue'],
index = [0, 500, 1000, 1500, 2000, 2500, 3000],
vmin=0, vmax=3000,
caption='Thermal Height (m)')
bounds = [[min(latitude_values), min(longitude_values)], [max(latitude_values), max(longitude_values)]]
img_overlay = folium.raster_layers.ImageOverlay(image=grid_z, bounds=bounds, colormap=heightcolor, opacity=0.4, mercator_project=True, origin="lower",pixelated=False)
return img_overlay, heightcolor
#%%
import pyproj
def latlon_to_xy(lat, lon):
crs = pyproj.CRS.from_cf(
{
"grid_mapping_name": "lambert_conformal_conic",
"standard_parallel": [63.3, 63.3],
"longitude_of_central_meridian": 15.0,
"latitude_of_projection_origin": 63.3,
"earth_radius": 6371000.0,
}
)
# Transformer to project from ESPG:4368 (WGS:84) to our lambert_conformal_conic
proj = pyproj.Proj.from_crs(4326, crs, always_xy=True)
# Compute projected coordinates of lat/lon point
X,Y = proj.transform(lon,lat)
return X,Y
# %%
def show_forecast():
with st.spinner('Fetching data...'):
@st.cache_data
def load_data(filepath):
local=False
if local:
subset = xr.open_dataset("subset.nc")
else:
subset = load_meps_for_location(filepath)
subset.to_netcdf("subset.nc")
return subset
if "file_path" not in st.session_state:
st.session_state.file_path = find_latest_meps_file()
subset = load_data(st.session_state.file_path)
def date_controls():
start_stop_time = [subset.time.min().values.astype('M8[ms]').astype('O'), subset.time.max().values.astype('M8[ms]').astype('O')]
now = datetime.datetime.now().replace(minute=0, second=0, microsecond=0)
if "forecast_date" not in st.session_state:
st.session_state.forecast_date = now.date()
if "forecast_time" not in st.session_state:
st.session_state.forecast_time = datetime.time(14,0)
if "forecast_length" not in st.session_state:
st.session_state.forecast_length = 1
if "altitude_max" not in st.session_state:
st.session_state.altitude_max = 3000
if "target_latitude" not in st.session_state:
st.session_state.target_latitude = 61.22908
if "target_longitude" not in st.session_state:
st.session_state.target_longitude = 7.09674
col1, col_date, col_time, col3 = st.columns([0.2,0.6,0.2,0.2])
with col1:
if st.button("⏮️", use_container_width=True):
st.session_state.forecast_date -= datetime.timedelta(days=1)
with col3:
if st.button("⏭️", use_container_width=True, disabled=(st.session_state.forecast_date == start_stop_time[1])):
st.session_state.forecast_date += datetime.timedelta(days=1)
with col_date:
st.session_state.forecast_date = st.date_input(
"Start date",
value=st.session_state.forecast_date,
min_value=start_stop_time[0],
max_value=start_stop_time[1],
label_visibility="collapsed",
disabled=True
)
with col_time:
st.session_state.forecast_time = st.time_input("Start time", value=st.session_state.forecast_time, step=3600,disabled=False,label_visibility="collapsed")
date_controls()
time_start = datetime.time(0, 0)
# convert subset.attrs['min_time']='2024-05-11T06:00:00Z' into datetime
min_time = datetime.datetime.strptime(subset.attrs['min_time'], "%Y-%m-%dT%H:%M:%SZ")
date_start = datetime.datetime.combine(st.session_state.forecast_date, time_start)
date_start = max(date_start, min_time)
date_end= datetime.datetime.combine(st.session_state.forecast_date+datetime.timedelta(days=st.session_state.forecast_length), datetime.time(0, 0))
## MAP
with st.expander("Map", expanded=True):
from streamlit_folium import st_folium
st.cache_data(ttl=30)
def build_map(date, hour):
m = folium.Map(location=[61.22908, 7.09674], zoom_start=9, tiles="openstreetmap")
img_overlay, heightcolor = build_map_overlays(subset, date=date, hour=hour)
img_overlay.add_to(m)
m.add_child(heightcolor,name="Thermal Height (m)")
m.add_child(folium.LatLngPopup())
return m
m = build_map(date = st.session_state.forecast_date,hour=st.session_state.forecast_time)
map=st_folium(m)
def get_pos(lat,lng):
return lat,lng
if map['last_clicked'] is not None:
st.session_state.target_latitude, st.session_state.target_longitude = get_pos(map['last_clicked']['lat'],map['last_clicked']['lng'])
x_target, y_target = latlon_to_xy(st.session_state.target_latitude, st.session_state.target_longitude)
wind_fig = create_wind_map(
subset,
date_start=date_start,
date_end=date_end,
altitude_max=st.session_state.altitude_max,
x_target=x_target,
y_target=y_target)
st.pyplot(wind_fig)
plt.close()
with st.expander("More settings", expanded=False):
st.session_state.forecast_length = st.number_input("multiday", 1, 3, 1, step=1,)
st.session_state.altitude_max = st.number_input("Max altitude", 0, 4000, 3000, step=500)
############################
######### SOUNDING #########
############################
st.markdown("---")
with st.expander("Sounding", expanded=False):
date = datetime.datetime.combine(st.session_state.forecast_date, st.session_state.forecast_time)
with st.spinner('Building sounding...'):
sounding_fig = create_sounding(
subset,
date=date.date(),
hour=date.hour,
altitude_max=st.session_state.altitude_max,
x_target=x_target,
y_target=y_target)
st.pyplot(sounding_fig)
plt.close()
st.markdown("Wind and sounding data from MEPS model (main model used by met.no), including the estimated ground temperature. Ive probably made many errors in this process.")
# Download new forecast if available
st.session_state.file_path = find_latest_meps_file()
subset = load_data(st.session_state.file_path)
if __name__ == "__main__":
run_streamlit = True
if run_streamlit:
st.set_page_config(page_title="PGWeather",page_icon="🪂", layout="wide")
show_forecast()
else:
lat = 61.22908
lon = 7.09674
x_target, y_target = latlon_to_xy(lat, lon)
dataset_file_path = find_latest_meps_file()
local=True
if local:
subset = xr.open_dataset("subset.nc")
else:
subset = load_meps_for_location()
subset.to_netcdf("subset.nc")
build_map_overlays(subset, date="2024-05-14", hour="16")
wind_fig = create_wind_map(subset, altitude_max=3000,x_target=x_target, y_target=y_target)
# Plot thermal top on a map for a specific time
#subset.sel(time=subset.time.min()).thermal_top.plot()
sounding_fig = create_sounding(subset, date="2024-05-12", hour=15, x_target=x_target, y_target=y_target)
|