File size: 20,297 Bytes
f340e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd31ae
f340e6f
 
 
 
 
 
 
 
 
 
575baef
f340e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd31ae
 
 
 
 
 
 
 
 
f340e6f
 
 
 
 
 
 
 
 
 
 
 
3fd31ae
f340e6f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#%%
import xarray as xr
from siphon.catalog import TDSCatalog
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.colors as mcolors
import streamlit as st
import datetime
import matplotlib.dates as mdates
from scipy.interpolate import griddata
import folium
import branca.colormap as cm

@st.cache_data(ttl=60)
def find_latest_meps_file():
    # The MEPS dataset: https://github.com/metno/NWPdocs/wiki/MEPS-dataset
    today = datetime.datetime.today()
    catalog_url = f"https://thredds.met.no/thredds/catalog/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}/catalog.xml"
    file_url_base = f"https://thredds.met.no/thredds/dodsC/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}"
    # Get the datasets from the catalog
    catalog = TDSCatalog(catalog_url)
    datasets = [s for s in catalog.datasets if "meps_det_ml" in s]
    file_path = f"{file_url_base}/{sorted(datasets)[-1]}"
    return file_path


@st.cache_data()
def load_meps_for_location(file_path=None, altitude_min=0, altitude_max=3000):
    """
    file_path=None
    altitude_min=0
    altitude_max=3000
    """

    if file_path is None:
        file_path = find_latest_meps_file()

    x_range= "[220:1:300]"
    y_range= "[420:1:500]"
    time_range = "[0:1:66]"
    hybrid_range = "[25:1:64]"
    height_range = "[0:1:0]"

    params = {
        "x": x_range,
        "y": y_range,
        "time": time_range,
        "hybrid": hybrid_range,
        "height": height_range,
        "longitude": f"{y_range}{x_range}",
        "latitude": f"{y_range}{x_range}",
        "air_temperature_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
        "ap" : f"{hybrid_range}",
        "b" : f"{hybrid_range}",
        "surface_air_pressure": f"{time_range}{height_range}{y_range}{x_range}",
        "x_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
        "y_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
    }

    path = f"{file_path}?{','.join(f'{k}{v}' for k, v in params.items())}"

    subset = xr.open_dataset(path, cache=True)
    subset.load()

    #%% get geopotential
    time_range_sfc = "[0:1:0]"
    surf_params = {
        "x": x_range,
        "y": y_range,
        "time": f"{time_range}",
        "surface_geopotential": f"{time_range_sfc}[0:1:0]{y_range}{x_range}",
        "air_temperature_0m": f"{time_range}[0:1:0]{y_range}{x_range}",
    } 
    file_path_surf = f"{file_path.replace('meps_det_ml','meps_det_sfc')}?{','.join(f'{k}{v}' for k, v in surf_params.items())}"

    # Load surface parameters and merge into the main dataset
    surf = xr.open_dataset(file_path_surf, cache=True)
    # Convert the surface geopotential to elevation
    elevation = (surf.surface_geopotential / 9.80665).squeeze()
    #elevation.plot()
    subset['elevation'] = elevation
    air_temperature_0m = surf.air_temperature_0m.squeeze()
    subset['air_temperature_0m'] = air_temperature_0m
    # subset.elevation.plot()
    #%%
    def hybrid_to_height(ds):
        """
        ds = subset
        """
        # Constants
        R = 287.05  # Gas constant for dry air
        g = 9.80665  # Gravitational acceleration

        # Calculate the pressure at each level
        p = ds['ap'] + ds['b'] * ds['surface_air_pressure']#.mean("ensemble_member")

        # Get the temperature at each level
        T = ds['air_temperature_ml']#.mean("ensemble_member")

        # Calculate the height difference between each level and the surface
        dp = ds['surface_air_pressure'] - p  # Pressure difference
        dT = T - T.isel(hybrid=-1)  # Temperature difference relative to the surface
        dT_mean = 0.5 * (T + T.isel(hybrid=-1))  # Mean temperature

        # Calculate the height using the hypsometric equation
        dz = (R * dT_mean / g) * np.log(ds['surface_air_pressure'] / p)

        return dz
    
    
    altitude = hybrid_to_height(subset).mean("time").squeeze().mean("x").mean("y")
    subset = subset.assign_coords(altitude=('hybrid', altitude.data))
    subset = subset.swap_dims({'hybrid': 'altitude'})

    # filter subset on altitude ranges
    subset = subset.where((subset.altitude >= altitude_min) & (subset.altitude <= altitude_max), drop=True).squeeze()

    wind_speed = np.sqrt(subset['x_wind_ml']**2 + subset['y_wind_ml']**2)
    subset = subset.assign(wind_speed=(('time', 'altitude','y','x'), wind_speed.data))

    
    subset['thermal_temp_diff'] = compute_thermal_temp_difference(subset)
    #subset = subset.assign(thermal_temp_diff=(('time', 'altitude','y','x'), thermal_temp_diff.data))

    # Find the indices where the thermal temperature difference is zero or negative
    # Create tiny value at ground level to avoid finding the ground as the thermal top
    thermal_temp_diff = subset['thermal_temp_diff'] 
    thermal_temp_diff = thermal_temp_diff.where(
        (thermal_temp_diff.sum("altitude")>0)|(subset['altitude']!=subset.altitude.min()), 
        thermal_temp_diff + 1e-6)
    indices = (thermal_temp_diff > 0).argmax(dim="altitude")
    # Get the altitudes corresponding to these indices
    thermal_top = subset.altitude[indices]
    subset = subset.assign(thermal_top=(('time', 'y', 'x'), thermal_top.data))
    subset = subset.set_coords(["latitude", "longitude"])

    return subset


#%%
def compute_thermal_temp_difference(subset):
    lapse_rate = 0.0098
    ground_temp = subset.air_temperature_0m-273.3
    air_temp = (subset['air_temperature_ml']-273.3)#.ffill(dim='altitude')

    # dimensions
    # 'air_temperature_ml'  altitude: 4 y: 3, x: 3
    # 'elevation'                       y: 3  x: 3
    # 'altitude'            altitude: 4

    # broadcast ground temperature to all altitudes, but let it decrease by lapse rate
    altitude_diff = subset.altitude - subset.elevation
    altitude_diff = altitude_diff.where(altitude_diff >= 0, 0)
    temp_decrease = lapse_rate * altitude_diff
    ground_parcel_temp = ground_temp - temp_decrease
    thermal_temp_diff = (ground_parcel_temp - air_temp).clip(min=0)
    return thermal_temp_diff

def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8):
    # build colorscale for thermal temperature difference
    wind_colors =    ["grey",   "blue",   "green",    "yellow",   "red",  "purple"]
    wind_positions = [0,        0.5,          3,          7,         12,     20]  # transition points
    wind_positions_norm = [i/wind_max for i in wind_positions]

    # Create the colormap
    windcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(wind_positions_norm, wind_colors)))


    # build colorscale for thermal temperature difference
    thermal_colors =        ['white',   'white',    'red',  'violet',   "darkviolet"]
    thermal_positions =     [0,         0.2,        2.0,    4,          8]
    thermal_positions_norm = [i/tempdiff_max for i in thermal_positions]

    # Create the colormap
    tempcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(thermal_positions_norm, thermal_colors)))
    return windcolors, tempcolors

@st.cache_data(ttl=60)
def create_wind_map(_subset,  x_target, y_target, altitude_max=4000, date_start=None, date_end=None):
    """
    altitude_max = 3000
    date_start = None
    date_end = None
    """
    subset = _subset



    wind_min, wind_max = 0.3, 20
    tempdiff_min, tempdiff_max = 0, 8
    windcolors, tempcolors = wind_and_temp_colorscales(wind_max, tempdiff_max)
    # Filter location
    windplot_data = subset.sel(x=x_target, y=y_target, method="nearest")
    
    # Filter time periods and altitudes
    if date_start is None:
        date_start = datetime.datetime.fromtimestamp(subset.time.min().values.astype('int64') / 1e9)
    if date_end is None:
        date_end = datetime.datetime.fromtimestamp(subset.time.max().values.astype('int64') / 1e9)
    new_timestamps = pd.date_range(date_start, date_end, 20)
    
    new_altitude = np.arange(windplot_data.elevation.mean(), altitude_max, altitude_max/20)
    windplot_data = windplot_data.interp(altitude=new_altitude, time=new_timestamps)

    # BUILD PLOT
    fig, ax = plt.subplots(figsize=(15, 7))
    contourf = ax.contourf(windplot_data.time, windplot_data.altitude, windplot_data.thermal_temp_diff.T, cmap=tempcolors, alpha=0.5, vmin=0, vmax=8)
    fig.colorbar(contourf, ax=ax, label='Thermal Temperature Difference (°C)', pad=0.01, orientation='vertical')
    
    # Wind quiver plot
    quiverplot = windplot_data.plot.quiver(
        x='time', y='altitude', u='x_wind_ml', v='y_wind_ml', 
        hue="wind_speed", 
        cmap = windcolors,
        vmin=wind_min, vmax=wind_max,
        alpha=0.5,
        pivot="middle",# headwidth=4, headlength=6,
        ax=ax  # Add this line to plot on the created axes 
    )
    quiverplot.colorbar.set_label("Wind Speed  [m/s]")
    quiverplot.colorbar.pad = 0.01

    # fill bottom with brown color
    plt.ylim(bottom=0)
    ax.fill_between(windplot_data.time, 0, windplot_data.elevation.mean(), color="brown", alpha=0.5)


    ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
    # normalize wind speed for color mapping
    norm = plt.Normalize(wind_min, wind_max)

    # add numerical labels to the plot
    for x, t in enumerate(windplot_data.time.values):
        for y, alt in enumerate(windplot_data.altitude.values):
            color = windcolors(norm(windplot_data.wind_speed[x,y]))
            ax.text(t+5, alt+20, f"{windplot_data.wind_speed[x,y]:.1f}", size=6, color=color)
    plt.title(f"Wind and thermals in point starting at {date_start.strftime('%Y-%m-%d')} (UTC)")
    plt.yscale("linear")
    return fig

#%%
@st.cache_data(ttl=7200)
def create_sounding(_subset, date, hour, x_target, y_target, altitude_max=3000):
    """
    date = "2024-05-12"
    hour = "15"
    x_target = 5
    y_target = 5
    """
    subset = _subset
    lapse_rate = 0.0098 # in degrees Celsius per meter
    subset = subset.where(subset.altitude< altitude_max,drop=True)
    # Create a figure object
    fig, ax = plt.subplots()

    # Define the dry adiabatic lapse rate
    def add_dry_adiabatic_lines(ds):
        # Define a range of temperatures at sea level
        T0 = np.arange(-40, 40, 5)  # temperatures from -40°C to 40°C in steps of 10°C

        # Create a 2D grid of temperatures and altitudes
        T0, altitude = np.meshgrid(T0, ds.altitude)

        # Calculate the temperatures at each altitude
        T_adiabatic = T0 - lapse_rate * altitude

        # Plot the dry adiabatic lines
        for i in range(T0.shape[1]):
            ax.plot(T_adiabatic[:, i], ds.altitude, 'r:', alpha=0.5)

    # Plot the actual temperature profiles
    time_str = f"{date} {hour}:00:00"
    # find x and y values cloeset to given latitude and longitude

    ds_time = subset.sel(time=time_str, x=x_target,y=y_target, method="nearest")
    T = (ds_time['air_temperature_ml'].values-273.3)  # in degrees Celsius
    ax.plot(T, ds_time.altitude, label=f"temp {pd.to_datetime(time_str).strftime('%H:%M')}")

    # Define the surface temperature
    T_surface = T[-1]+3
    T_parcel = T_surface - lapse_rate * ds_time.altitude

    # Plot the temperature of the rising air parcel
    filter = T_parcel>T
    ax.plot(T_parcel[filter], ds_time.altitude[filter], label='Rising air parcel',color="green")

    add_dry_adiabatic_lines(ds_time)

    ax.set_xlabel('Temperature (°C)')
    ax.set_ylabel('Altitude (m)')
    ax.set_title(f'Temperature Profile and Dry Adiabatic Lapse Rate for {date} {hour}:00')
    ax.legend(title='Time')
    xmin, xmax = ds_time['air_temperature_ml'].min().values-273.3, ds_time['air_temperature_ml'].max().values-273.3+3
    ax.set_xlim(xmin, xmax)
    ax.grid(True)

    # Return the figure object
    return fig

@st.cache_data(ttl=7200)
def build_map_overlays(_subset, date=None, hour=None):
    """
    date = "2024-05-13"
    hour = "15"
    x_target=None
    y_target=None
    """
    subset = _subset
    
    # Get the latitude and longitude values from the dataset
    latitude_values = subset.latitude.values.flatten()
    longitude_values = subset.longitude.values.flatten()
    thermal_top_values = subset.thermal_top.sel(time=f"{date}T{hour}").values.flatten()
    #thermal_top_values = subset.elevation.mean("altitude").values.flatten()
    # Convert the irregular grid data into a regular grid
    step_lon, step_lat = subset.longitude.diff("x").quantile(0.1).values, subset.latitude.diff("y").quantile(0.1).values
    grid_x, grid_y = np.mgrid[min(latitude_values):max(latitude_values):step_lat, min(longitude_values):max(longitude_values):step_lon]
    grid_z = griddata((latitude_values, longitude_values), thermal_top_values, (grid_x, grid_y), method='linear')
    grid_z = np.nan_to_num(grid_z, copy=False, nan=0)
    # Normalize the grid data to a range suitable for image display
    heightcolor = cm.LinearColormap(
        colors = ['white',  'white',     'green',   'yellow', 'orange','red', 'darkblue'], 
        index  = [0,        500,        1000,       1500,   2000,     2500,       3000], 
        vmin=0, vmax=3000, 
        caption='Thermal Height (m)')


    bounds = [[min(latitude_values), min(longitude_values)], [max(latitude_values), max(longitude_values)]]
    img_overlay = folium.raster_layers.ImageOverlay(image=grid_z, bounds=bounds, colormap=heightcolor, opacity=0.4, mercator_project=True, origin="lower",pixelated=False)

    return img_overlay, heightcolor

#%%
import pyproj
def latlon_to_xy(lat, lon):
    crs = pyproj.CRS.from_cf(
        {
            "grid_mapping_name": "lambert_conformal_conic",
            "standard_parallel": [63.3, 63.3],
            "longitude_of_central_meridian": 15.0,
            "latitude_of_projection_origin": 63.3,
            "earth_radius": 6371000.0,
        }
    )
    # Transformer to project from ESPG:4368 (WGS:84) to our lambert_conformal_conic
    proj = pyproj.Proj.from_crs(4326, crs, always_xy=True)

    # Compute projected coordinates of lat/lon point
    X,Y = proj.transform(lon,lat)
    return X,Y
# %%
def show_forecast():

    with st.spinner('Fetching data...'):                
        if "file_path" not in st.session_state:
            st.session_state.file_path = find_latest_meps_file()
        subset = load_data(st.session_state.file_path)

    def date_controls():
        
        start_stop_time = [subset.time.min().values.astype('M8[ms]').astype('O'), subset.time.max().values.astype('M8[ms]').astype('O')]
        now = datetime.datetime.now().replace(minute=0, second=0, microsecond=0)

        if "forecast_date" not in st.session_state:
            st.session_state.forecast_date = (now + datetime.timedelta(days=1)).date()
        if "forecast_time" not in st.session_state:
            st.session_state.forecast_time = datetime.time(14,0)
        if "forecast_length" not in st.session_state:
            st.session_state.forecast_length = 1
        if "altitude_max" not in st.session_state:
            st.session_state.altitude_max = 3000
        if "target_latitude" not in st.session_state:
            st.session_state.target_latitude = 61.22908
        if "target_longitude" not in st.session_state:
            st.session_state.target_longitude = 7.09674
        col1, col_date, col_time, col3 = st.columns([0.2,0.6,0.2,0.2])

        with col1:
            if st.button("⏮️", use_container_width=True):
                st.session_state.forecast_date -= datetime.timedelta(days=1)
        with col3:
            if st.button("⏭️", use_container_width=True, disabled=(st.session_state.forecast_date == start_stop_time[1])):
                st.session_state.forecast_date += datetime.timedelta(days=1)
        with col_date:
            st.session_state.forecast_date = st.date_input(
                "Start date", 
                value=st.session_state.forecast_date, 
                min_value=start_stop_time[0], 
                max_value=start_stop_time[1], 
                label_visibility="collapsed",
                disabled=True
                )
        with col_time:
            st.session_state.forecast_time = st.time_input("Start time", value=st.session_state.forecast_time, step=3600,disabled=False,label_visibility="collapsed")

    date_controls()
    time_start = datetime.time(0, 0)
    # convert subset.attrs['min_time']='2024-05-11T06:00:00Z' into datetime
    min_time = datetime.datetime.strptime(subset.attrs['min_time'], "%Y-%m-%dT%H:%M:%SZ")
    date_start = datetime.datetime.combine(st.session_state.forecast_date, time_start)
    date_start = max(date_start, min_time)
    date_end= datetime.datetime.combine(st.session_state.forecast_date+datetime.timedelta(days=st.session_state.forecast_length), datetime.time(0, 0))

    ## MAP
    with st.expander("Map", expanded=True):
        from streamlit_folium import st_folium
        st.cache_data(ttl=30)
        def build_map(date, hour):
            m = folium.Map(location=[61.22908, 7.09674], zoom_start=9, tiles="openstreetmap")
            img_overlay, heightcolor = build_map_overlays(subset, date=date, hour=hour)
            
            img_overlay.add_to(m)
            m.add_child(heightcolor,name="Thermal Height (m)")
            m.add_child(folium.LatLngPopup())
            return m
        m = build_map(date = st.session_state.forecast_date,hour=st.session_state.forecast_time)
        map=st_folium(m)
        def get_pos(lat,lng):
            return lat,lng
        if map['last_clicked'] is not None:
            st.session_state.target_latitude, st.session_state.target_longitude = get_pos(map['last_clicked']['lat'],map['last_clicked']['lng'])
    
    x_target, y_target = latlon_to_xy(st.session_state.target_latitude, st.session_state.target_longitude)
    wind_fig = create_wind_map(
                subset,
                date_start=date_start, 
                date_end=date_end, 
                altitude_max=st.session_state.altitude_max,
                x_target=x_target,
                y_target=y_target)
    st.pyplot(wind_fig)
    plt.close()
    

    with st.expander("More settings", expanded=False):
        st.session_state.forecast_length = st.number_input("multiday", 1, 3, 1, step=1,)
        st.session_state.altitude_max = st.number_input("Max altitude", 0, 4000, 3000, step=500)
    
    ############################
    ######### SOUNDING #########
    ############################
    st.markdown("---")
    with st.expander("Sounding", expanded=False):
        date = datetime.datetime.combine(st.session_state.forecast_date, st.session_state.forecast_time)

        with st.spinner('Building sounding...'):
            sounding_fig = create_sounding(
                subset, 
                date=date.date(), 
                hour=date.hour, 
                altitude_max=st.session_state.altitude_max,
                x_target=x_target,
                y_target=y_target)
        st.pyplot(sounding_fig)
        plt.close()

    st.markdown("Wind and sounding data from MEPS model (main model used by met.no), including the estimated ground temperature. Ive probably made many errors in this process.")

    # Download new forecast if available
    st.session_state.file_path = find_latest_meps_file()
    subset = load_data(st.session_state.file_path)

@st.cache_data
def load_data(filepath):
    local=False
    if local:
        subset = xr.open_dataset("subset.nc")
    else:
        subset = load_meps_for_location(filepath)
        subset.to_netcdf("subset.nc")
    return subset

if __name__ == "__main__":
    run_streamlit = True
    if run_streamlit:
        st.set_page_config(page_title="PGWeather",page_icon="🪂", layout="wide")
        show_forecast()
    else:
        lat = 61.22908
        lon = 7.09674
        x_target, y_target = latlon_to_xy(lat, lon)
        
        dataset_file_path = find_latest_meps_file()
        subset = load_data(dataset_file_path)

        build_map_overlays(subset, date="2024-05-14", hour="16")

        wind_fig = create_wind_map(subset, altitude_max=3000,x_target=x_target, y_target=y_target)
        

        # Plot thermal top on a map for a specific time
        #subset.sel(time=subset.time.min()).thermal_top.plot()
        sounding_fig = create_sounding(subset, date="2024-05-12", hour=15, x_target=x_target, y_target=y_target)