|
|
|
import xarray as xr |
|
from siphon.catalog import TDSCatalog |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
import matplotlib.colors as mcolors |
|
import streamlit as st |
|
import datetime |
|
import matplotlib.dates as mdates |
|
from scipy.interpolate import griddata |
|
import folium |
|
import branca.colormap as cm |
|
|
|
@st.cache_data(ttl=60) |
|
def find_latest_meps_file(): |
|
|
|
today = datetime.datetime.today() |
|
catalog_url = f"https://thredds.met.no/thredds/catalog/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}/catalog.xml" |
|
file_url_base = f"https://thredds.met.no/thredds/dodsC/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}" |
|
|
|
catalog = TDSCatalog(catalog_url) |
|
datasets = [s for s in catalog.datasets if "meps_det_ml" in s] |
|
file_path = f"{file_url_base}/{sorted(datasets)[-1]}" |
|
return file_path |
|
|
|
|
|
@st.cache_data() |
|
def load_meps_for_location(file_path=None, altitude_min=0, altitude_max=3000): |
|
""" |
|
file_path=None |
|
altitude_min=0 |
|
altitude_max=3000 |
|
""" |
|
|
|
if file_path is None: |
|
file_path = find_latest_meps_file() |
|
|
|
x_range= "[220:1:300]" |
|
y_range= "[420:1:500]" |
|
time_range = "[0:1:66]" |
|
hybrid_range = "[25:1:64]" |
|
height_range = "[0:1:0]" |
|
|
|
params = { |
|
"x": x_range, |
|
"y": y_range, |
|
"time": time_range, |
|
"hybrid": hybrid_range, |
|
"height": height_range, |
|
"longitude": f"{y_range}{x_range}", |
|
"latitude": f"{y_range}{x_range}", |
|
"air_temperature_ml": f"{time_range}{hybrid_range}{y_range}{x_range}", |
|
"ap" : f"{hybrid_range}", |
|
"b" : f"{hybrid_range}", |
|
"surface_air_pressure": f"{time_range}{height_range}{y_range}{x_range}", |
|
"x_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}", |
|
"y_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}", |
|
} |
|
|
|
path = f"{file_path}?{','.join(f'{k}{v}' for k, v in params.items())}" |
|
|
|
subset = xr.open_dataset(path, cache=True) |
|
subset.load() |
|
|
|
|
|
time_range_sfc = "[0:1:0]" |
|
surf_params = { |
|
"x": x_range, |
|
"y": y_range, |
|
"time": f"{time_range}", |
|
"surface_geopotential": f"{time_range_sfc}[0:1:0]{y_range}{x_range}", |
|
"air_temperature_0m": f"{time_range}[0:1:0]{y_range}{x_range}", |
|
} |
|
file_path_surf = f"{file_path.replace('meps_det_ml','meps_det_sfc')}?{','.join(f'{k}{v}' for k, v in surf_params.items())}" |
|
|
|
|
|
surf = xr.open_dataset(file_path_surf, cache=True) |
|
|
|
elevation = (surf.surface_geopotential / 9.80665).squeeze() |
|
|
|
subset['elevation'] = elevation |
|
air_temperature_0m = surf.air_temperature_0m.squeeze() |
|
subset['air_temperature_0m'] = air_temperature_0m |
|
|
|
|
|
def hybrid_to_height(ds): |
|
""" |
|
ds = subset |
|
""" |
|
|
|
R = 287.05 |
|
g = 9.80665 |
|
|
|
|
|
p = ds['ap'] + ds['b'] * ds['surface_air_pressure'] |
|
|
|
|
|
T = ds['air_temperature_ml'] |
|
|
|
|
|
dp = ds['surface_air_pressure'] - p |
|
dT = T - T.isel(hybrid=-1) |
|
dT_mean = 0.5 * (T + T.isel(hybrid=-1)) |
|
|
|
|
|
dz = (R * dT_mean / g) * np.log(ds['surface_air_pressure'] / p) |
|
|
|
return dz |
|
|
|
|
|
altitude = hybrid_to_height(subset).mean("time").squeeze().mean("x").mean("y") |
|
subset = subset.assign_coords(altitude=('hybrid', altitude.data)) |
|
subset = subset.swap_dims({'hybrid': 'altitude'}) |
|
|
|
|
|
subset = subset.where((subset.altitude >= altitude_min) & (subset.altitude <= altitude_max), drop=True).squeeze() |
|
|
|
wind_speed = np.sqrt(subset['x_wind_ml']**2 + subset['y_wind_ml']**2) |
|
subset = subset.assign(wind_speed=(('time', 'altitude','y','x'), wind_speed.data)) |
|
|
|
|
|
subset['thermal_temp_diff'] = compute_thermal_temp_difference(subset) |
|
|
|
|
|
|
|
|
|
thermal_temp_diff = subset['thermal_temp_diff'] |
|
thermal_temp_diff = thermal_temp_diff.where( |
|
(thermal_temp_diff.sum("altitude")>0)|(subset['altitude']!=subset.altitude.min()), |
|
thermal_temp_diff + 1e-6) |
|
indices = (thermal_temp_diff > 0).argmax(dim="altitude") |
|
|
|
thermal_top = subset.altitude[indices] |
|
subset = subset.assign(thermal_top=(('time', 'y', 'x'), thermal_top.data)) |
|
subset = subset.set_coords(["latitude", "longitude"]) |
|
|
|
return subset |
|
|
|
|
|
|
|
def compute_thermal_temp_difference(subset): |
|
lapse_rate = 0.0098 |
|
ground_temp = subset.air_temperature_0m-273.3 |
|
air_temp = (subset['air_temperature_ml']-273.3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
altitude_diff = subset.altitude - subset.elevation |
|
altitude_diff = altitude_diff.where(altitude_diff >= 0, 0) |
|
temp_decrease = lapse_rate * altitude_diff |
|
ground_parcel_temp = ground_temp - temp_decrease |
|
thermal_temp_diff = (ground_parcel_temp - air_temp).clip(min=0) |
|
return thermal_temp_diff |
|
|
|
def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8): |
|
|
|
wind_colors = ["grey", "blue", "green", "yellow", "red", "purple"] |
|
wind_positions = [0, 0.5, 3, 7, 12, 20] |
|
wind_positions_norm = [i/wind_max for i in wind_positions] |
|
|
|
|
|
windcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(wind_positions_norm, wind_colors))) |
|
|
|
|
|
|
|
thermal_colors = ['white', 'white', 'red', 'violet', "darkviolet"] |
|
thermal_positions = [0, 0.2, 2.0, 4, 8] |
|
thermal_positions_norm = [i/tempdiff_max for i in thermal_positions] |
|
|
|
|
|
tempcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(thermal_positions_norm, thermal_colors))) |
|
return windcolors, tempcolors |
|
|
|
@st.cache_data(ttl=60) |
|
def create_wind_map(_subset, x_target, y_target, altitude_max=4000, date_start=None, date_end=None): |
|
""" |
|
altitude_max = 3000 |
|
date_start = None |
|
date_end = None |
|
""" |
|
subset = _subset |
|
|
|
|
|
|
|
wind_min, wind_max = 0.3, 20 |
|
tempdiff_min, tempdiff_max = 0, 8 |
|
windcolors, tempcolors = wind_and_temp_colorscales(wind_max, tempdiff_max) |
|
|
|
windplot_data = subset.sel(x=x_target, y=y_target, method="nearest") |
|
|
|
|
|
if date_start is None: |
|
date_start = datetime.datetime.fromtimestamp(subset.time.min().values.astype('int64') / 1e9) |
|
if date_end is None: |
|
date_end = datetime.datetime.fromtimestamp(subset.time.max().values.astype('int64') / 1e9) |
|
new_timestamps = pd.date_range(date_start, date_end, 20) |
|
|
|
new_altitude = np.arange(windplot_data.elevation.mean(), altitude_max, altitude_max/20) |
|
windplot_data = windplot_data.interp(altitude=new_altitude, time=new_timestamps) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(15, 7)) |
|
contourf = ax.contourf(windplot_data.time, windplot_data.altitude, windplot_data.thermal_temp_diff.T, cmap=tempcolors, alpha=0.5, vmin=0, vmax=8) |
|
fig.colorbar(contourf, ax=ax, label='Thermal Temperature Difference (°C)', pad=0.01, orientation='vertical') |
|
|
|
|
|
quiverplot = windplot_data.plot.quiver( |
|
x='time', y='altitude', u='x_wind_ml', v='y_wind_ml', |
|
hue="wind_speed", |
|
cmap = windcolors, |
|
vmin=wind_min, vmax=wind_max, |
|
alpha=0.5, |
|
pivot="middle", |
|
ax=ax |
|
) |
|
quiverplot.colorbar.set_label("Wind Speed [m/s]") |
|
quiverplot.colorbar.pad = 0.01 |
|
|
|
|
|
plt.ylim(bottom=0) |
|
ax.fill_between(windplot_data.time, 0, windplot_data.elevation.mean(), color="brown", alpha=0.5) |
|
|
|
|
|
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) |
|
|
|
norm = plt.Normalize(wind_min, wind_max) |
|
|
|
|
|
for x, t in enumerate(windplot_data.time.values): |
|
for y, alt in enumerate(windplot_data.altitude.values): |
|
color = windcolors(norm(windplot_data.wind_speed[x,y])) |
|
ax.text(t+5, alt+20, f"{windplot_data.wind_speed[x,y]:.1f}", size=6, color=color) |
|
plt.title(f"Wind and thermals in point starting at {date_start.strftime('%Y-%m-%d')} (UTC)") |
|
plt.yscale("linear") |
|
return fig |
|
|
|
|
|
@st.cache_data(ttl=7200) |
|
def create_sounding(_subset, date, hour, x_target, y_target, altitude_max=3000): |
|
""" |
|
date = "2024-05-12" |
|
hour = "15" |
|
x_target = 5 |
|
y_target = 5 |
|
""" |
|
subset = _subset |
|
lapse_rate = 0.0098 |
|
subset = subset.where(subset.altitude< altitude_max,drop=True) |
|
|
|
fig, ax = plt.subplots() |
|
|
|
|
|
def add_dry_adiabatic_lines(ds): |
|
|
|
T0 = np.arange(-40, 40, 5) |
|
|
|
|
|
T0, altitude = np.meshgrid(T0, ds.altitude) |
|
|
|
|
|
T_adiabatic = T0 - lapse_rate * altitude |
|
|
|
|
|
for i in range(T0.shape[1]): |
|
ax.plot(T_adiabatic[:, i], ds.altitude, 'r:', alpha=0.5) |
|
|
|
|
|
time_str = f"{date} {hour}:00:00" |
|
|
|
|
|
ds_time = subset.sel(time=time_str, x=x_target,y=y_target, method="nearest") |
|
T = (ds_time['air_temperature_ml'].values-273.3) |
|
ax.plot(T, ds_time.altitude, label=f"temp {pd.to_datetime(time_str).strftime('%H:%M')}") |
|
|
|
|
|
T_surface = T[-1]+3 |
|
T_parcel = T_surface - lapse_rate * ds_time.altitude |
|
|
|
|
|
filter = T_parcel>T |
|
ax.plot(T_parcel[filter], ds_time.altitude[filter], label='Rising air parcel',color="green") |
|
|
|
add_dry_adiabatic_lines(ds_time) |
|
|
|
ax.set_xlabel('Temperature (°C)') |
|
ax.set_ylabel('Altitude (m)') |
|
ax.set_title(f'Temperature Profile and Dry Adiabatic Lapse Rate for {date} {hour}:00') |
|
ax.legend(title='Time') |
|
xmin, xmax = ds_time['air_temperature_ml'].min().values-273.3, ds_time['air_temperature_ml'].max().values-273.3+3 |
|
ax.set_xlim(xmin, xmax) |
|
ax.grid(True) |
|
|
|
|
|
return fig |
|
|
|
@st.cache_data(ttl=7200) |
|
def build_map_overlays(_subset, date=None, hour=None): |
|
""" |
|
date = "2024-05-13" |
|
hour = "15" |
|
x_target=None |
|
y_target=None |
|
""" |
|
subset = _subset |
|
|
|
|
|
latitude_values = subset.latitude.values.flatten() |
|
longitude_values = subset.longitude.values.flatten() |
|
thermal_top_values = subset.thermal_top.sel(time=f"{date}T{hour}").values.flatten() |
|
|
|
|
|
step_lon, step_lat = subset.longitude.diff("x").quantile(0.1).values, subset.latitude.diff("y").quantile(0.1).values |
|
grid_x, grid_y = np.mgrid[min(latitude_values):max(latitude_values):step_lat, min(longitude_values):max(longitude_values):step_lon] |
|
grid_z = griddata((latitude_values, longitude_values), thermal_top_values, (grid_x, grid_y), method='linear') |
|
grid_z = np.nan_to_num(grid_z, copy=False, nan=0) |
|
|
|
heightcolor = cm.LinearColormap( |
|
colors = ['white', 'white', 'green', 'yellow', 'orange','red', 'darkblue'], |
|
index = [0, 500, 1000, 1500, 2000, 2500, 3000], |
|
vmin=0, vmax=3000, |
|
caption='Thermal Height (m)') |
|
|
|
|
|
bounds = [[min(latitude_values), min(longitude_values)], [max(latitude_values), max(longitude_values)]] |
|
img_overlay = folium.raster_layers.ImageOverlay(image=grid_z, bounds=bounds, colormap=heightcolor, opacity=0.4, mercator_project=True, origin="lower",pixelated=False) |
|
|
|
return img_overlay, heightcolor |
|
|
|
|
|
import pyproj |
|
def latlon_to_xy(lat, lon): |
|
crs = pyproj.CRS.from_cf( |
|
{ |
|
"grid_mapping_name": "lambert_conformal_conic", |
|
"standard_parallel": [63.3, 63.3], |
|
"longitude_of_central_meridian": 15.0, |
|
"latitude_of_projection_origin": 63.3, |
|
"earth_radius": 6371000.0, |
|
} |
|
) |
|
|
|
proj = pyproj.Proj.from_crs(4326, crs, always_xy=True) |
|
|
|
|
|
X,Y = proj.transform(lon,lat) |
|
return X,Y |
|
|
|
def show_forecast(): |
|
|
|
with st.spinner('Fetching data...'): |
|
if "file_path" not in st.session_state: |
|
st.session_state.file_path = find_latest_meps_file() |
|
subset = load_data(st.session_state.file_path) |
|
|
|
def date_controls(): |
|
|
|
start_stop_time = [subset.time.min().values.astype('M8[ms]').astype('O'), subset.time.max().values.astype('M8[ms]').astype('O')] |
|
now = datetime.datetime.now().replace(minute=0, second=0, microsecond=0) |
|
|
|
if "forecast_date" not in st.session_state: |
|
st.session_state.forecast_date = (now + datetime.timedelta(days=1)).date() |
|
if "forecast_time" not in st.session_state: |
|
st.session_state.forecast_time = datetime.time(14,0) |
|
if "forecast_length" not in st.session_state: |
|
st.session_state.forecast_length = 1 |
|
if "altitude_max" not in st.session_state: |
|
st.session_state.altitude_max = 3000 |
|
if "target_latitude" not in st.session_state: |
|
st.session_state.target_latitude = 61.22908 |
|
if "target_longitude" not in st.session_state: |
|
st.session_state.target_longitude = 7.09674 |
|
col1, col_date, col_time, col3 = st.columns([0.2,0.6,0.2,0.2]) |
|
|
|
with col1: |
|
if st.button("⏮️", use_container_width=True): |
|
st.session_state.forecast_date -= datetime.timedelta(days=1) |
|
with col3: |
|
if st.button("⏭️", use_container_width=True, disabled=(st.session_state.forecast_date == start_stop_time[1])): |
|
st.session_state.forecast_date += datetime.timedelta(days=1) |
|
with col_date: |
|
st.session_state.forecast_date = st.date_input( |
|
"Start date", |
|
value=st.session_state.forecast_date, |
|
min_value=start_stop_time[0], |
|
max_value=start_stop_time[1], |
|
label_visibility="collapsed", |
|
disabled=True |
|
) |
|
with col_time: |
|
st.session_state.forecast_time = st.time_input("Start time", value=st.session_state.forecast_time, step=3600,disabled=False,label_visibility="collapsed") |
|
|
|
date_controls() |
|
time_start = datetime.time(0, 0) |
|
|
|
min_time = datetime.datetime.strptime(subset.attrs['min_time'], "%Y-%m-%dT%H:%M:%SZ") |
|
date_start = datetime.datetime.combine(st.session_state.forecast_date, time_start) |
|
date_start = max(date_start, min_time) |
|
date_end= datetime.datetime.combine(st.session_state.forecast_date+datetime.timedelta(days=st.session_state.forecast_length), datetime.time(0, 0)) |
|
|
|
|
|
with st.expander("Map", expanded=True): |
|
from streamlit_folium import st_folium |
|
st.cache_data(ttl=30) |
|
def build_map(date, hour): |
|
m = folium.Map(location=[61.22908, 7.09674], zoom_start=9, tiles="openstreetmap") |
|
img_overlay, heightcolor = build_map_overlays(subset, date=date, hour=hour) |
|
|
|
img_overlay.add_to(m) |
|
m.add_child(heightcolor,name="Thermal Height (m)") |
|
m.add_child(folium.LatLngPopup()) |
|
return m |
|
m = build_map(date = st.session_state.forecast_date,hour=st.session_state.forecast_time) |
|
map=st_folium(m) |
|
def get_pos(lat,lng): |
|
return lat,lng |
|
if map['last_clicked'] is not None: |
|
st.session_state.target_latitude, st.session_state.target_longitude = get_pos(map['last_clicked']['lat'],map['last_clicked']['lng']) |
|
|
|
x_target, y_target = latlon_to_xy(st.session_state.target_latitude, st.session_state.target_longitude) |
|
wind_fig = create_wind_map( |
|
subset, |
|
date_start=date_start, |
|
date_end=date_end, |
|
altitude_max=st.session_state.altitude_max, |
|
x_target=x_target, |
|
y_target=y_target) |
|
st.pyplot(wind_fig) |
|
plt.close() |
|
|
|
|
|
with st.expander("More settings", expanded=False): |
|
st.session_state.forecast_length = st.number_input("multiday", 1, 3, 1, step=1,) |
|
st.session_state.altitude_max = st.number_input("Max altitude", 0, 4000, 3000, step=500) |
|
|
|
|
|
|
|
|
|
st.markdown("---") |
|
with st.expander("Sounding", expanded=False): |
|
date = datetime.datetime.combine(st.session_state.forecast_date, st.session_state.forecast_time) |
|
|
|
with st.spinner('Building sounding...'): |
|
sounding_fig = create_sounding( |
|
subset, |
|
date=date.date(), |
|
hour=date.hour, |
|
altitude_max=st.session_state.altitude_max, |
|
x_target=x_target, |
|
y_target=y_target) |
|
st.pyplot(sounding_fig) |
|
plt.close() |
|
|
|
st.markdown("Wind and sounding data from MEPS model (main model used by met.no), including the estimated ground temperature. Ive probably made many errors in this process.") |
|
|
|
|
|
st.session_state.file_path = find_latest_meps_file() |
|
subset = load_data(st.session_state.file_path) |
|
|
|
@st.cache_data |
|
def load_data(filepath): |
|
local=False |
|
if local: |
|
subset = xr.open_dataset("subset.nc") |
|
else: |
|
subset = load_meps_for_location(filepath) |
|
subset.to_netcdf("subset.nc") |
|
return subset |
|
|
|
if __name__ == "__main__": |
|
run_streamlit = True |
|
if run_streamlit: |
|
st.set_page_config(page_title="PGWeather",page_icon="🪂", layout="wide") |
|
show_forecast() |
|
else: |
|
lat = 61.22908 |
|
lon = 7.09674 |
|
x_target, y_target = latlon_to_xy(lat, lon) |
|
|
|
dataset_file_path = find_latest_meps_file() |
|
subset = load_data(dataset_file_path) |
|
|
|
build_map_overlays(subset, date="2024-05-14", hour="16") |
|
|
|
wind_fig = create_wind_map(subset, altitude_max=3000,x_target=x_target, y_target=y_target) |
|
|
|
|
|
|
|
|
|
sounding_fig = create_sounding(subset, date="2024-05-12", hour=15, x_target=x_target, y_target=y_target) |
|
|
|
|
|
|
|
|