File size: 3,784 Bytes
554d4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import LlamaCpp
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
import os
import tempfile
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.chains import RetrievalQA




def initialize_session_state():
    if 'history' not in st.session_state:
        st.session_state['history'] = []

    if 'generated' not in st.session_state:
        st.session_state['generated'] = ["Hello! Ask me anything about 🤗"]

    if 'past' not in st.session_state:
        st.session_state['past'] = ["Hey! 👋"]

def conversation_chat(query, chain, history):
    result = chain({"question": query, "chat_history": history})
    history.append((query, result["answer"]))
    return result["answer"]

def display_chat_history(chain):
    reply_container = st.container()
    container = st.container()

    with container:
        with st.form(key='my_form', clear_on_submit=True):
            user_input = st.text_input("Question:", placeholder="Ask about your PDF", key='input')
            submit_button = st.form_submit_button(label='Send')

        if submit_button and user_input:
            with st.spinner('Generating response...'):
                output = conversation_chat(user_input, chain, st.session_state['history'])

            st.session_state['past'].append(user_input)
            st.session_state['generated'].append(output)

    if st.session_state['generated']:
        with reply_container:
            for i in range(len(st.session_state['generated'])):
                message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
                message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")

def create_conversational_chain(vector_store):
    # Create llm
    # Importing the Model
    llm = LlamaCpp(
        streaming = True,
        model_path = "model/mistral-7b-instruct-v0.2.Q4_K_M.gguf",
        temperature = 0.75,
        top_p = 1,
        verbose = True,
        n_ctx = 4096
    )
    
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

    chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
                                                 retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
                                                 memory=memory)
    return chain

def main():
    # Initialize session state
    initialize_session_state()
    st.title("Multi-PDF ChatBot using Mistral-7B-Instruct :books:")
    # Initialize Streamlit
    # st.sidebar.title("Document Processing")
    # uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
    # Loading the file directory using PyPDF Directory
    loader = PyPDFDirectoryLoader("data_pdf/")
    data = loader.load()

    # Splitting extracted text data into chunks for easier processing
    text_splitter = RecursiveCharacterTextSplitter(chunk_size = 100000, chunk_overlap = 20)
    text_chunks = text_splitter.split_documents(data)

    # Downloading Embessings
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

    # Creating Embeddings for each of the text chunk
    vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)

    # Create the chain object
    chain = create_conversational_chain(vector_store)
        
    display_chat_history(chain)

if __name__ == "__main__":
    main()