Spaces:
Build error
Build error
# Object detection reference training scripts | |
This folder contains reference training scripts for object detection. | |
They serve as a log of how to train specific models, to provide baseline | |
training and evaluation scripts to quickly bootstrap research. | |
To execute the example commands below you must install the following: | |
``` | |
cython | |
pycocotools | |
matplotlib | |
``` | |
You must modify the following flags: | |
`--data-path=/path/to/coco/dataset` | |
`--nproc_per_node=<number_of_gpus_available>` | |
Except otherwise noted, all models have been trained on 8x V100 GPUs. | |
### Faster R-CNN ResNet-50 FPN | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\ | |
--lr-steps 16 22 --aspect-ratio-group-factor 3 | |
``` | |
### Faster R-CNN MobileNetV3-Large FPN | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model fasterrcnn_mobilenet_v3_large_fpn --epochs 26\ | |
--lr-steps 16 22 --aspect-ratio-group-factor 3 | |
``` | |
### Faster R-CNN MobileNetV3-Large 320 FPN | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model fasterrcnn_mobilenet_v3_large_320_fpn --epochs 26\ | |
--lr-steps 16 22 --aspect-ratio-group-factor 3 | |
``` | |
### FCOS ResNet-50 FPN | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model fcos_resnet50_fpn --epochs 26\ | |
--lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --amp | |
``` | |
### RetinaNet | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model retinanet_resnet50_fpn --epochs 26\ | |
--lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 | |
``` | |
### SSD300 VGG16 | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model ssd300_vgg16 --epochs 120\ | |
--lr-steps 80 110 --aspect-ratio-group-factor 3 --lr 0.002 --batch-size 4\ | |
--weight-decay 0.0005 --data-augmentation ssd | |
``` | |
### SSDlite320 MobileNetV3-Large | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model ssdlite320_mobilenet_v3_large --epochs 660\ | |
--aspect-ratio-group-factor 3 --lr-scheduler cosineannealinglr --lr 0.15 --batch-size 24\ | |
--weight-decay 0.00004 --data-augmentation ssdlite | |
``` | |
### Mask R-CNN | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco --model maskrcnn_resnet50_fpn --epochs 26\ | |
--lr-steps 16 22 --aspect-ratio-group-factor 3 | |
``` | |
### Keypoint R-CNN | |
``` | |
torchrun --nproc_per_node=8 train.py\ | |
--dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\ | |
--lr-steps 36 43 --aspect-ratio-group-factor 3 | |
``` | |