siro1's picture
siro1 HF Staff
commit from `quarto publish`
cf7a8a2
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.40">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Similarity Search – Open-Source AI Cookbook</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
</style>
<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting-549806ee2085284f45b00abea8c6df48.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap-2be10d9e998f81ff6e49e26833438aa5.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<link rel="stylesheet" href="../styles.css">
</head>
<body class="nav-sidebar docked">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/automatic_embedding.html">Additional Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/faiss.html">FAISS for Efficient Search</a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation docked overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="../">Open-Source AI Cookbook</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">About</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">About Quarto</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true">
<span class="menu-text">Open-Source AI Cookbook</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true">
<span class="menu-text">RAG Techniques</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth2 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/rag_zephyr_langchain.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">RAG Zephyr &amp; LangChain</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/advanced_rag.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Advanced RAG</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/rag_evaluation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">RAG Evaluation</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true">
<span class="menu-text">Additional Techniques</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth2 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/automatic_embedding.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Automatic Embedding</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/faiss.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text">FAISS for Efficient Search</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/single_gpu.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Single GPU Optimization</span></a>
</div>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">On this page</h2>
<ul>
<li><a href="#embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" id="toc-embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" class="nav-link active" data-scroll-target="#embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss">Embedding multimodal data for similarity search using 🤗 transformers, 🤗 datasets and FAISS</a>
<ul class="collapse">
<li><a href="#querying-the-data-with-text-prompts" id="toc-querying-the-data-with-text-prompts" class="nav-link" data-scroll-target="#querying-the-data-with-text-prompts">Querying the data with text prompts</a></li>
<li><a href="#querying-the-data-with-image-prompts" id="toc-querying-the-data-with-image-prompts" class="nav-link" data-scroll-target="#querying-the-data-with-image-prompts">Querying the data with image prompts</a></li>
<li><a href="#saving-pushing-and-loading-the-embeddings" id="toc-saving-pushing-and-loading-the-embeddings" class="nav-link" data-scroll-target="#saving-pushing-and-loading-the-embeddings">Saving, pushing and loading the embeddings</a></li>
</ul></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/automatic_embedding.html">Additional Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/faiss.html">FAISS for Efficient Search</a></li></ol></nav>
<div class="quarto-title">
<h1 class="title">Similarity Search</h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" class="level1">
<h1>Embedding multimodal data for similarity search using 🤗 transformers, 🤗 datasets and FAISS</h1>
<p><em>Authored by: <a href="https://huggingface.co/merve">Merve Noyan</a></em></p>
<p>Embeddings are semantically meaningful compressions of information. They can be used to do similarity search, zero-shot classification or simply train a new model. Use cases for similarity search include searching for similar products in e-commerce, content search in social media and more. This notebook walks you through using 🤗transformers, 🤗datasets and FAISS to create and index embeddings from a feature extraction model to later use them for similarity search. Let’s install necessary libraries.</p>
<div id="cell-1" class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install <span class="op">-</span>q datasets faiss<span class="op">-</span>gpu transformers sentencepiece</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>For this tutorial, we will use <a href="https://huggingface.co/openai/clip-vit-base-patch16">CLIP model</a> to extract the features. CLIP is a revolutionary model that introduced joint training of a text encoder and an image encoder to connect two modalities.</p>
<div id="cell-3" class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> torch</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> PIL <span class="im">import</span> Image</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoImageProcessor, AutoModel, AutoTokenizer</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> faiss</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>device <span class="op">=</span> torch.device(<span class="st">'cuda'</span> <span class="cf">if</span> torch.cuda.is_available() <span class="cf">else</span> <span class="st">"cpu"</span>)</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>model <span class="op">=</span> AutoModel.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>).to(device)</span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>processor <span class="op">=</span> AutoImageProcessor.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>)</span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Load the dataset. To keep this notebook light, we will use a small captioning dataset, <a href="https://huggingface.co/datasets/jmhessel/newyorker_caption_contest">jmhessel/newyorker_caption_contest</a>.</p>
<div id="cell-5" class="cell">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> datasets <span class="im">import</span> load_dataset</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> load_dataset(<span class="st">"jmhessel/newyorker_caption_contest"</span>, <span class="st">"explanation"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>See an example.</p>
<div id="cell-7" class="cell" data-outputid="682033f9-da37-4cae-e1bc-4a5fbbb7f2fa">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>ds[<span class="st">"train"</span>][<span class="dv">0</span>][<span class="st">"image"</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="4">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-5-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
<div id="cell-8" class="cell" data-outputid="ff7c2ca8-0c6a-49d0-cfd6-4be775e012a1">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>ds[<span class="st">"train"</span>][<span class="dv">0</span>][<span class="st">"image_description"</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="5">
<pre><code>'Two women are looking out a window. There is snow outside, and there is a snowman with human arms.'</code></pre>
</div>
</div>
<p>We don’t have to write any function to embed examples or create an index. 🤗 datasets library’s FAISS integration abstracts these processes. We can simply use <code>map</code> method of the dataset to create a new column with the embeddings for each example like below. Let’s create one for text features on the prompt column.</p>
<div id="cell-10" class="cell">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>dataset <span class="op">=</span> ds[<span class="st">"train"</span>]</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings <span class="op">=</span> dataset.<span class="bu">map</span>(<span class="kw">lambda</span> example:</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a> {<span class="st">'embeddings'</span>: model.get_text_features(</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a> <span class="op">**</span>tokenizer([example[<span class="st">"image_description"</span>]],</span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a> truncation<span class="op">=</span><span class="va">True</span>, return_tensors<span class="op">=</span><span class="st">"pt"</span>)</span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a> .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-11" class="cell">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.add_faiss_index(column<span class="op">=</span><span class="st">'embeddings'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We can do the same and get the image embeddings.</p>
<div id="cell-13" class="cell">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings <span class="op">=</span> ds_with_embeddings.<span class="bu">map</span>(<span class="kw">lambda</span> example:</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a> {<span class="st">'image_embeddings'</span>: model.get_image_features(</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a> <span class="op">**</span>processor([example[<span class="st">"image"</span>]], return_tensors<span class="op">=</span><span class="st">"pt"</span>)</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a> .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-14" class="cell">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.add_faiss_index(column<span class="op">=</span><span class="st">'image_embeddings'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<section id="querying-the-data-with-text-prompts" class="level2">
<h2 class="anchored" data-anchor-id="querying-the-data-with-text-prompts">Querying the data with text prompts</h2>
<p>We can now query the dataset with text or image to get similar items from it.</p>
<div id="cell-17" class="cell">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>prmt <span class="op">=</span> <span class="st">"a snowy day"</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>prmt_embedding <span class="op">=</span> model.get_text_features(<span class="op">**</span>tokenizer([prmt], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>).to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds_with_embeddings.get_nearest_examples(<span class="st">'embeddings'</span>, prmt_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-18" class="cell" data-outputid="b56009fe-dc99-4cc3-84e5-559fb3625d30">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> downscale_images(image):</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a> width <span class="op">=</span> <span class="dv">200</span></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a> ratio <span class="op">=</span> (width <span class="op">/</span> <span class="bu">float</span>(image.size[<span class="dv">0</span>]))</span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> height <span class="op">=</span> <span class="bu">int</span>((<span class="bu">float</span>(image.size[<span class="dv">1</span>]) <span class="op">*</span> <span class="bu">float</span>(ratio)))</span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> img <span class="op">=</span> image.resize((width, height), Image.Resampling.LANCZOS)</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a> <span class="cf">return</span> img</span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>images <span class="op">=</span> [downscale_images(image) <span class="cf">for</span> image <span class="kw">in</span> retrieved_examples[<span class="st">"image"</span>]]</span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;see the closest text and image</span></span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_examples[<span class="st">"image_description"</span>])</span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>display(images[<span class="dv">0</span>])</span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>['A man is in the snow. A boy with a huge snow shovel is there too. They are outside a house.']</code></pre>
</div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-12-output-2.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="querying-the-data-with-image-prompts" class="level2">
<h2 class="anchored" data-anchor-id="querying-the-data-with-image-prompts">Querying the data with image prompts</h2>
<p>Image similarity inference is similar, where you just call <code>get_image_features</code>.</p>
<div id="cell-21" class="cell" data-outputid="53478699-5753-4946-90d6-0aa8b76694a6">
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> requests</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;image of a beaver</span></span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>url <span class="op">=</span> <span class="st">"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png"</span></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>image <span class="op">=</span> Image.<span class="bu">open</span>(requests.get(url, stream<span class="op">=</span><span class="va">True</span>).raw)</span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>display(downscale_images(image))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-13-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
<p>Search for the similar image.</p>
<div id="cell-23" class="cell">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>img_embedding <span class="op">=</span> model.get_image_features(<span class="op">**</span>processor([image], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>).to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds_with_embeddings.get_nearest_examples(<span class="st">'image_embeddings'</span>, img_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Display the most similar image to the beaver image.</p>
<div id="cell-25" class="cell" data-outputid="fa620b08-4435-4929-f67f-32b3f8f46b70">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>images <span class="op">=</span> [downscale_images(image) <span class="cf">for</span> image <span class="kw">in</span> retrieved_examples[<span class="st">"image"</span>]]</span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;see the closest text and image</span></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_examples[<span class="st">"image_description"</span>])</span>
<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>display(images[<span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>['Salmon swim upstream but they see a grizzly bear and are in shock. The bear has a smug look on his face when he sees the salmon.']</code></pre>
</div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-15-output-2.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="saving-pushing-and-loading-the-embeddings" class="level2">
<h2 class="anchored" data-anchor-id="saving-pushing-and-loading-the-embeddings">Saving, pushing and loading the embeddings</h2>
<p>We can save the dataset with embeddings with <code>save_faiss_index</code>.</p>
<div id="cell-27" class="cell">
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.save_faiss_index(<span class="st">'embeddings'</span>, <span class="st">'embeddings/embeddings.faiss'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-28" class="cell">
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.save_faiss_index(<span class="st">'image_embeddings'</span>, <span class="st">'embeddings/image_embeddings.faiss'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>It’s a good practice to store the embeddings in a dataset repository, so we will create one and push our embeddings there to pull later. We will login to Hugging Face Hub, create a dataset repository there and push our indexes there and load using <code>snapshot_download</code>.</p>
<div id="cell-30" class="cell">
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> huggingface_hub <span class="im">import</span> HfApi, notebook_login, snapshot_download</span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>notebook_login()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-31" class="cell">
<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> huggingface_hub <span class="im">import</span> HfApi</span>
<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>api <span class="op">=</span> HfApi()</span>
<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a>api.create_repo(<span class="st">"merve/faiss_embeddings"</span>, repo_type<span class="op">=</span><span class="st">"dataset"</span>)</span>
<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a>api.upload_folder(</span>
<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a> folder_path<span class="op">=</span><span class="st">"./embeddings"</span>,</span>
<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a> repo_id<span class="op">=</span><span class="st">"merve/faiss_embeddings"</span>,</span>
<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a> repo_type<span class="op">=</span><span class="st">"dataset"</span>,</span>
<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-32" class="cell">
<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>snapshot_download(repo_id<span class="op">=</span><span class="st">"merve/faiss_embeddings"</span>, repo_type<span class="op">=</span><span class="st">"dataset"</span>,</span>
<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a> local_dir<span class="op">=</span><span class="st">"downloaded_embeddings"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We can load the embeddings to the dataset with no embeddings using <code>load_faiss_index</code>.</p>
<div id="cell-34" class="cell">
<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> ds[<span class="st">"train"</span>]</span>
<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>ds.load_faiss_index(<span class="st">'embeddings'</span>, <span class="st">'./downloaded_embeddings/embeddings.faiss'</span>)</span>
<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;infer again</span></span>
<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a>prmt <span class="op">=</span> <span class="st">"people under the rain"</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-35" class="cell">
<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>prmt_embedding <span class="op">=</span> model.get_text_features(</span>
<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a> <span class="op">**</span>tokenizer([prmt], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>)</span>
<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a> .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds.get_nearest_examples(<span class="st">'embeddings'</span>, prmt_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-36" class="cell" data-outputid="8d5008b4-ab8f-4b42-92e7-b29e57c126cb">
<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>display(retrieved_examples[<span class="st">"image"</span>][<span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-23-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
}
const getTextToCopy = function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
text: getTextToCopy
});
clipboard.on('success', onCopySuccess);
if (window.document.getElementById('quarto-embedded-source-code-modal')) {
const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
text: getTextToCopy,
container: window.document.getElementById('quarto-embedded-source-code-modal')
});
clipboardModal.on('success', onCopySuccess);
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>