Spaces:
Running
Running
File size: 2,485 Bytes
6b25170 62d782d 6b25170 62d782d 6b25170 3805905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# Necessary imports
import gradio as gr
from transformers import pipeline
# Load the zero-shot classification model
classifier = pipeline(
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0"
)
# Function to perform zero-shot classification
def ZeroShotTextClassification(text_input, candidate_labels):
"""
Performs zero-shot classification on the given text input using the provided candidate labels.
Args:
text_input (str): The input text to classify.
candidate_labels (str): A comma-separated string of candidate labels.
Returns:
dict: A dictionary containing the predicted labels as keys and their corresponding scores as values.
"""
# Split the candidate labels
labels = [label.strip(" ") for label in candidate_labels.split(",")]
# Output dictionary to store the predicted labels and their scores
output = {}
# Perform zero-shot classification
prediction = classifier(text_input, labels)
# Create a dictionary with the predicted labels and their corresponding scores
for i in range(len(prediction["labels"])):
output[prediction["labels"][i]] = prediction["scores"][i]
# Return the output
return output
# Examples to display in the interface
examples = [
["I love to play the guitar", "music, artist, food, travel"],
["I am a software engineer at Google", "technology, engineering, art, science"],
["I am a professional basketball player", "sports, athlete, chef, politics"],
]
# Title and description and article for the interface
title = "Zero Shot Text Classification"
description = "Classify text using zero-shot classification with DeBERTa-v3-large-zeroshot model! Provide a text input and a list of candidate labels separated by commas. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2312.17543.pdf' target='_blank'>Building Efficient Universal Classifiers with Natural Language Inference</a> | <a href='https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0' target='_blank'>Model Page</a></p>"
# Launch the interface
demo = gr.Interface(
fn=ZeroShotTextClassification,
inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")],
outputs=gr.Label(label="Classification"),
title=title,
description=description,
article=article,
examples=examples,
theme="Soft",
allow_flagging="never",
)
demo.launch(debug=False)
|