|
|
|
import spaces
|
|
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
|
|
|
|
|
model_id = "microsoft/Florence-2-large-ft"
|
|
model = (
|
|
AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval().cuda()
|
|
)
|
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
|
|
@spaces.GPU(duration=120)
|
|
def run_example(task_prompt, image, text_input=None):
|
|
"""
|
|
Runs an example using the given task prompt and image.
|
|
|
|
Args:
|
|
task_prompt (str): The task prompt for the example.
|
|
image (PIL.Image.Image): The image to be processed.
|
|
text_input (str, optional): Additional text input to be appended to the task prompt. Defaults to None.
|
|
|
|
Returns:
|
|
str: The parsed answer generated by the model.
|
|
"""
|
|
|
|
|
|
if text_input is None:
|
|
prompt = task_prompt
|
|
else:
|
|
prompt = task_prompt + text_input
|
|
|
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
|
|
|
|
|
generated_ids = model.generate(
|
|
input_ids=inputs["input_ids"].cuda(),
|
|
pixel_values=inputs["pixel_values"].cuda(),
|
|
max_new_tokens=1024,
|
|
early_stopping=False,
|
|
do_sample=False,
|
|
num_beams=3,
|
|
)
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
parsed_answer = processor.post_process_generation(
|
|
generated_text, task=task_prompt, image_size=(image.width, image.height)
|
|
)
|
|
|
|
|
|
return parsed_answer
|
|
|