mindreaderbot / app.py
skanderovitch's picture
Update app.py
606728b verified
raw
history blame
6.29 kB
from collections import defaultdict
import seaborn as sns
import streamlit as st
import streamlit.components.v1 as components
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
from scipy.stats import norm
st.set_page_config(page_title='Can you be truly random ?', layout = 'wide', page_icon = 'favicon.jpg', initial_sidebar_state = 'auto')
cm = sns.light_palette("green", as_cmap=True)
# Custom CSS to styles
st.markdown("""
<style>
button {
padding-top: 50px !important;
padding-bottom: 50px !important;
}
</style>
""", unsafe_allow_html=True)
def set_state(x):
if x == 1: st.toast('The journey begins!', icon='😍')
st.session_state.stage = x
def reset_game():
set_state(0)
if 'n_buttons' not in st.session_state:
st.session_state.n_buttons = 2
st.session_state.history = []
st.session_state.preds = defaultdict(lambda: defaultdict(int))
st.session_state.pnl = [0]
st.session_state.min = [0]
st.session_state.max = [0]
st.session_state.max_history = 10
if 'stage' not in st.session_state:
reset_game()
st.title('Can your brain be random?')
n_plays = 50
if st.session_state.stage == 0:
st.button('Begin', on_click=set_state, args=[1],use_container_width=True)
st.session_state.n_buttons = st.slider(label="How many buttons to play with?", min_value=2, max_value=5,value=2)
st.markdown(f'You will be presented with {st.session_state.n_buttons} buttons to randomly choose from')
st.markdown(f"At each round, I will try to predict which button you click")
st.session_state.max_history = st.slider(label="How much memory can I use?", min_value=2, max_value=20,value=10)
st.markdown(f"I will examine {st.session_state.max_history}-long sequences you played in the past")
st.markdown('This will help me make a guess')
st.markdown(f"If I get it right, I earn {st.session_state.n_buttons-1} point(s), otherwise you earn 1 point")
st.subheader(f'This is a fair game, as you have {(1-1/st.session_state.n_buttons):.0%} chances of winning')
st.markdown(f"Play as long as you want and try to beat me!")
st.markdown(f"I will start showing you my strategy from {n_plays} rounds")
def make_pred(max_history=st.session_state.max_history,alpha=0.5):
history = st.session_state.history
denominator = 0
scores = {str(i):0 for i in range(st.session_state.n_buttons)}
recent = np.array(history[-max_history:])
data = []
for i in range(1,len(history)):
past = np.array(history[-i-max_history:-i])
played = history[-i]
decay = np.exp(-alpha*np.linspace(1,0,len(past)))
same = past == recent[-len(past):]
similarity = (same*decay).sum() / decay.sum()
weight = len(history)/(len(history)+i) * similarity
scores[played] += weight
denominator += weight
if similarity > 0.5:
data.append([played,similarity,weight,i] + [None]* (max_history-len(past)) +list(same))
if not denominator:
return get_random_play(),data
result = {str(i):scores[str(i)]/denominator for i in range(st.session_state.n_buttons)}
return result, data
def get_random_play():
return {str(i):1/st.session_state.n_buttons for i in range(st.session_state.n_buttons)}
def update_pnl(user_win):
current_score = st.session_state.pnl[-1]
current_score += -1 if user_win else (st.session_state.n_buttons-1)
st.session_state.pnl.append(current_score)
expected_change = (2**0.5) * ((st.session_state.n_buttons-1)/st.session_state.n_buttons)
st.session_state.min.append(st.session_state.min[-1]-expected_change)
st.session_state.max.append(st.session_state.max[-1]+expected_change)
def user_select(i,choice):
st.session_state.history.append(str(i))
if i == choice:
st.toast("I win!", icon='πŸ€ͺ')
update_pnl(user_win=False)
else:
st.toast('Well done!', icon='😍')
update_pnl(user_win=True)
# refresh_preds()
def compute_perf():
data = np.array(st.session_state.pnl)
if len(data) > 1:
data = data[1:] - data[:-1]
perf = data.mean()
std = data.std()
win = (data>0).mean()
sharpe = perf / std
return win,sharpe
else:
return 0,0
if st.session_state.stage == 1:
pred,data = make_pred()
choice = max(pred,key=pred.get)
progress = min(1.,float(len(st.session_state.history))/n_plays)
my_bar = st.progress(progress)
cols = st.columns(st.session_state.n_buttons)
for i,col in enumerate(cols):
col.button(str(i),on_click=user_select, args=[str(i),choice],
use_container_width=True)
col1,col2 = st.columns(2)
win,sharpe = compute_perf()
if progress >= 1.:
if sharpe > 0.1:
emoticon = "πŸš€"
elif sharpe < 0:
emoticon = "πŸ“‰"
else:
emoticon = "🧠"
text = f'%age win={win:.0%} Sharpe={sharpe:.3f} {emoticon}'
col1.subheader('My earnings so far...')
col1.write(text)
dev = abs(st.session_state.pnl[-1] / st.session_state.max[-1])
chance = 1 - norm.cdf(dev)
col1.write(f'There is only {chance:.2%} chances of achieving this by chance')
fig = px.line(st.session_state.pnl)
fig.update_layout(showlegend=False)
fig.update_layout(xaxis={'visible': True, 'showticklabels': False})
col1.plotly_chart(fig, use_container_width=True)
cols = ['you_played','similarity','weight','how_long_ago'] + [f'same_{i}' for i in range(st.session_state.max_history)]
data = pd.DataFrame(data,columns=cols).set_index('how_long_ago').sort_values('weight',ascending=False)[:10]
col2.subheader(f'In the past, you played')
col2.dataframe(data.style.background_gradient(cmap=cm), use_container_width=True)
won = choice == st.session_state.history[-1]
col2.write(f'So I chose {choice} (p={pred[choice]:.0%}) and ' + ('won πŸš€' if won else 'lost πŸ“‰'))
st.button('Start over', on_click=reset_game, args=[],
use_container_width=True)