Spaces:
Sleeping
Sleeping
File size: 6,032 Bytes
b1f21a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import os
import re
import numpy as np
from glob import glob
import lightgbm as lgb
import pickle
os.environ['S3_BUCKET'] = 'seriouslyusers'
os.environ['S3_BUCKET'] = "seriouslytestfaces"
import io
def get_s3_url(key):
url = 'https://s3.amazonaws.com/%s/%s' % (os.environ['S3_BUCKET'],key.replace(' ','+'))
return url
embeddings = pd.read_parquet('./embeddings.parquet')
def create_dir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def setup_user():
create_dir(f'./users/{st.session_state.name}')
create_dir(f'./users/{st.session_state.name}/likes')
create_dir(f'./users/{st.session_state.name}/models')
def get_filename():
if 'preds' in st.session_state:
p = st.session_state.preds**4
p /= sum(p)
choice = np.random.choice(range(len(p)),p=p)
st.session_state.pred = st.session_state.preds[choice]
return embeddings.index[choice]
st.toast('Random for now')
return np.random.choice(embeddings.index)
st.title('What does attractive mean to you?')
st.session_state.name = st.text_input(label='Invent a unique alias (and remember it)')
def liked(filename,like):
filename = f'./users/{st.session_state.name}/likes/' + filename.split('/')[-1] + '.' + str(like)[:1]
open(filename, 'a').close()
def get_train_data():
clean = lambda file : file.replace('\\','/').split('/')[-1][:-2]
true_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.T')))
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
true_embeddings = embeddings.loc[true_files].values
false_embeddings = embeddings.loc[false_files].values
st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
X = np.vstack([true_embeddings,false_embeddings])
return X,labels
def train_model(X,labels):
if len(labels) < 30:
st.toast('Not enough data')
return
if labels.mean() > 0.9:
st.toast('Not enough negatives')
return
if labels.mean() < 0.1:
st.toast('Not enough positives')
return
train_data = lgb.Dataset(X, label=labels)
num_round = 10
param = {'num_leaves':10, 'objective': 'binary', 'metric' : 'auc'}
bst = lgb.train(param, train_data, num_round)
in_sample_preds = bst.predict(X)
in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
st.session_state.score = in_sample_score
st.toast(f'Score = {in_sample_score:.1%}')
return bst
def rank_candidates(bst):
return bst.predict(embeddings.values)
def train():
X,labels = get_train_data()
bst = train_model(X,labels)
if bst is None:
return
filename = f'./users/{st.session_state.name}/models/model.txt'
bst.save_model(filename)
preds = rank_candidates(bst)
st.session_state.preds = preds
def cleanup():
files = glob(f'./users/{st.session_state.name}/likes/*')
for f in files:
os.remove(f)
if 'preds' in st.session_state:
del st.session_state.preds
del st.session_state.pred
def get_extremes(n=4):
if 'preds' in st.session_state:
preds = pd.Series(st.session_state.preds,index=embeddings.index).sort_values(ascending=False)
return preds.iloc[:n].to_dict(),preds.iloc[-n:].to_dict()
def get_strange(n=4):
if 'labels' in st.session_state:
labels = st.session_state.labels
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
data = pd.concat([labels, preds],axis=1)
st.toast(data.columns)
data['diff'] = data['pred'] - data['label']
data = data.sort_values('diff')['diff']
return data.iloc[:n].to_dict(),data.iloc[-n:].to_dict()
if st.session_state.name:
st.session_state.name = re.sub(r'[^A-Za-z0-9 ]+', '', st.session_state.name)[:100]
setup_user()
st.subheader(f"Let's start {st.session_state.name}")
filename = get_filename()
cc1, cc2 = st.columns(2)
c1,c2 = cc1.columns(2)
c1.button('Why not', on_click=liked, args=[filename,True])
c2.button('Nope', on_click=liked, args=[filename,False])
key = get_s3_url(filename)
cc1.image(key, width = 400)
c1,c2 = cc2.columns(2)
c1.button('Train',on_click=train,args=[])
c2.button('Start over',on_click=cleanup,args=[])
if 'preds' in st.session_state:
cc1.write('Here is our guess')
cc1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
best,worst = get_extremes()
cc2.subheader('Predicted best')
cs = cc2.columns(len(best))
for c,(file,pred) in zip(cs,best.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc2.subheader('Predicted worst')
cs = cc2.columns(len(worst))
for c,(file,pred) in zip(cs,worst.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
cc1.subheader('Where you confused me')
best,worst = get_strange()
cc1.write("You didn't like my picks")
cs = cc1.columns(len(best))
for c,(file,pred) in zip(cs,best.items()):
c.metric("", "",f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.write("You liked these more than I thought")
cs = cc1.columns(len(worst))
for c,(file,pred) in zip(cs,worst.items()):
c.metric("","", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
|