File size: 6,032 Bytes
b1f21a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import os
import re
import numpy as np
from glob import glob
import lightgbm as lgb
import pickle

os.environ['S3_BUCKET'] = 'seriouslyusers'
os.environ['S3_BUCKET'] = "seriouslytestfaces"

import io

def get_s3_url(key):
    url = 'https://s3.amazonaws.com/%s/%s' % (os.environ['S3_BUCKET'],key.replace(' ','+'))
    return url

embeddings = pd.read_parquet('./embeddings.parquet')

def create_dir(directory):
    if not os.path.exists(directory):
        os.makedirs(directory)

def setup_user():
    create_dir(f'./users/{st.session_state.name}')
    create_dir(f'./users/{st.session_state.name}/likes')
    create_dir(f'./users/{st.session_state.name}/models')

def get_filename():
    if 'preds' in st.session_state:
        p = st.session_state.preds**4
        p /= sum(p)
        choice = np.random.choice(range(len(p)),p=p)
        st.session_state.pred = st.session_state.preds[choice]
        return embeddings.index[choice]
    st.toast('Random for now')
    return np.random.choice(embeddings.index)

st.title('What does attractive mean to you?')
st.session_state.name = st.text_input(label='Invent a unique alias (and remember it)')


def liked(filename,like):
    filename = f'./users/{st.session_state.name}/likes/' + filename.split('/')[-1] + '.' + str(like)[:1]
    open(filename, 'a').close()

def get_train_data():
    clean = lambda file : file.replace('\\','/').split('/')[-1][:-2]
    true_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.T')))
    false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
    true_embeddings = embeddings.loc[true_files].values
    false_embeddings = embeddings.loc[false_files].values
    st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
    labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
    st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
    X = np.vstack([true_embeddings,false_embeddings])
    return X,labels

def train_model(X,labels):
    if len(labels) < 30:
        st.toast('Not enough data')
        return
    if labels.mean() > 0.9:
        st.toast('Not enough negatives')
        return
    if labels.mean() < 0.1:
        st.toast('Not enough positives')
        return
    train_data = lgb.Dataset(X, label=labels)
    num_round = 10
    param = {'num_leaves':10, 'objective': 'binary', 'metric' : 'auc'}
    bst = lgb.train(param, train_data, num_round)
    in_sample_preds = bst.predict(X)
    in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
    st.session_state.score = in_sample_score
    st.toast(f'Score = {in_sample_score:.1%}')
    return bst
    
def rank_candidates(bst):
    return bst.predict(embeddings.values)


def train():
    X,labels = get_train_data()
    bst = train_model(X,labels)
    if bst is None:
        return
    filename = f'./users/{st.session_state.name}/models/model.txt'
    bst.save_model(filename)
    preds = rank_candidates(bst)
    st.session_state.preds = preds


def cleanup():
    files = glob(f'./users/{st.session_state.name}/likes/*')
    for f in files:
       os.remove(f)
    if 'preds' in st.session_state:
        del st.session_state.preds
        del st.session_state.pred
        
    
def get_extremes(n=4):
    if 'preds' in st.session_state:
        preds = pd.Series(st.session_state.preds,index=embeddings.index).sort_values(ascending=False)
        return preds.iloc[:n].to_dict(),preds.iloc[-n:].to_dict()
        
def get_strange(n=4):
    if 'labels' in st.session_state:
        labels = st.session_state.labels
        preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
        data = pd.concat([labels, preds],axis=1)
        st.toast(data.columns)
        
        data['diff'] = data['pred'] - data['label']
        data = data.sort_values('diff')['diff']
        return data.iloc[:n].to_dict(),data.iloc[-n:].to_dict() 
        
        


if st.session_state.name:
    st.session_state.name = re.sub(r'[^A-Za-z0-9 ]+', '', st.session_state.name)[:100]
    setup_user()
    st.subheader(f"Let's start {st.session_state.name}")
    filename = get_filename()
    
    
    cc1, cc2 = st.columns(2)
    c1,c2 = cc1.columns(2)
    c1.button('Why not', on_click=liked, args=[filename,True])
    c2.button('Nope', on_click=liked, args=[filename,False])
    key = get_s3_url(filename)
    cc1.image(key, width = 400)
    c1,c2 = cc2.columns(2)
    c1.button('Train',on_click=train,args=[])
    c2.button('Start over',on_click=cleanup,args=[])
    if 'preds' in st.session_state:
        
        cc1.write('Here is our guess')
        cc1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
    
        best,worst = get_extremes()
        
        cc2.subheader('Predicted best')
        cs = cc2.columns(len(best))
        for c,(file,pred) in zip(cs,best.items()):
            c.metric("", f'{pred:.0%}')
            c.image(get_s3_url(file), width = 100)
            
        cc2.subheader('Predicted worst')
        cs = cc2.columns(len(worst))
        for c,(file,pred) in zip(cs,worst.items()):
            c.metric("", f'{pred:.0%}')
            c.image(get_s3_url(file), width = 100)

        cc1.metric("Overall model accuracy", f'{st.session_state.score:.0%}')

        cc1.subheader('Where you confused me')

        best,worst = get_strange()
        
        cc1.write("You didn't like my picks")
        cs = cc1.columns(len(best))
        for c,(file,pred) in zip(cs,best.items()):
            c.metric("", "",f'{pred:.0%}')
            c.image(get_s3_url(file), width = 100)

        cc1.write("You liked these more than I thought")
        cs = cc1.columns(len(worst))
        for c,(file,pred) in zip(cs,worst.items()):
            c.metric("","", f'{pred:.0%}')
            c.image(get_s3_url(file), width = 100)