File size: 22,367 Bytes
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
d6a6bab
820bb68
d6a6bab
 
 
820bb68
d6a6bab
820bb68
 
d6a6bab
820bb68
 
d6a6bab
 
 
 
 
 
 
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a6bab
820bb68
 
d6a6bab
 
 
 
820bb68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.5
#   kernelspec:
#     display_name: Python 3
#     name: python3
# ---

# + id="QAY_RQOLcRtA" executionInfo={"status": "ok", "timestamp": 1677945244865, "user_tz": 0, "elapsed": 19712, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="be179435-1667-40af-8a80-7bc63a472715"
MAIN = __name__ == "__main__"
if MAIN:
    print('Mounting drive...')
    from google.colab import drive
    drive.mount('/content/drive')
# %cd /content/drive/MyDrive/Colab Notebooks/cartpole-demo

# + colab={"base_uri": "https://localhost:8080/"} id="GgSNZRJh4EjV" executionInfo={"status": "ok", "timestamp": 1677945316689, "user_tz": 0, "elapsed": 57846, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="6aeb7bf3-e186-449d-cdc4-c66f778244b2"
# !pip install einops
# !pip install wandb
# !pip install jupytext
# !pip install pygame
# !pip install torchtyping
# !pip install gradio
# !pip install huggingface_hub

# + colab={"base_uri": "https://localhost:8080/"} id="1g58HZUb8Ltl" executionInfo={"status": "ok", "timestamp": 1677945458077, "user_tz": 0, "elapsed": 16862, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="62ffc9cd-ff0b-4473-c17a-4593a14526cf"
# !git config --global credential.helper store
# !git config --global user.name "skar0"
# !git config --global user.email "[email protected]"
# !huggingface-cli login
# !jupytext --to py cartpole.ipynb
# !git fetch
# # !chmod +x .git/hooks/pre-push
# !git status

# + id="dYeFdxVIWOqc" executionInfo={"status": "ok", "timestamp": 1677945546175, "user_tz": 0, "elapsed": 318, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}


# + colab={"base_uri": "https://localhost:8080/"} id="5xFqBnKzVN60" executionInfo={"status": "ok", "timestamp": 1677945556589, "user_tz": 0, "elapsed": 7558, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="535e6c5e-17f6-4342-8a9d-ff54f4c82187"
# !git push

# + id="vEczQ48wC40O"
import os
import glob
import sys
import argparse
import random
import time
from distutils.util import strtobool
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch as t
from torchtyping import TensorType as TT
from typeguard import typechecked
import gym
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
from gym.spaces import Discrete
from typing import Any, List, Optional, Union, Tuple, Iterable
from einops import rearrange
import importlib
import wandb
from typeguard import typechecked


# + id="K7T8bs1Y76ZK" executionInfo={"status": "ok", "timestamp": 1677942330521, "user_tz": 0, "elapsed": 8, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="f59ffef0-7156-4f27-d992-a392d59a1c73"
# %env "WANDB_NOTEBOOK_NAME" "cartpole.py"

# + id="Q5E93-BGRjuy"
def make_env(
    env_id: str, seed: int, idx: int, capture_video: bool, run_name: str
):
    """
    Return a function that returns an environment after setting up boilerplate.
    """
    
    def thunk():
        env = gym.make(env_id, new_step_api=True)
        env = gym.wrappers.RecordEpisodeStatistics(env)
        if capture_video:
            if idx == 0:
                # Video every 50 runs for env #1
                env = gym.wrappers.RecordVideo(
                    env, 
                    f"videos/{run_name}", 
                    episode_trigger=lambda x : x % 50 == 0 
                )
        obs = env.reset(seed=seed)
        env.action_space.seed(seed)
        env.observation_space.seed(seed)
        return env
    
    return thunk


# + id="Kf152ROwHjM_"
def test_minibatch_indexes(minibatch_indexes):
    for n in range(5):
        frac, minibatch_size = np.random.randint(1, 8, size=(2,))
        batch_size = frac * minibatch_size
        indices = minibatch_indexes(batch_size, minibatch_size)
        assert any([isinstance(indices, list), isinstance(indices, np.ndarray)])
        assert isinstance(indices[0], np.ndarray)
        assert len(indices) == frac
        np.testing.assert_equal(np.sort(np.stack(indices).flatten()), np.arange(batch_size))


# + id="mhvduVeOHkln"
def test_calc_entropy_bonus(calc_entropy_bonus):
    probs = Categorical(logits=t.randn((3, 4)))
    ent_coef = 0.5
    expected = ent_coef * probs.entropy().mean()
    actual = calc_entropy_bonus(probs, ent_coef)
    t.testing.assert_close(expected, actual)


# + id="Aya60GeCGA5X"
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
    t.nn.init.orthogonal_(layer.weight, std)
    t.nn.init.constant_(layer.bias, bias_const)
    return layer

class Agent(nn.Module):
    critic: nn.Sequential
    actor: nn.Sequential

    def __init__(self, envs: gym.vector.SyncVectorEnv):
        super().__init__()
        obs_shape = np.array(
            (envs.num_envs, ) + envs.single_action_space.shape
        ).prod().astype(int)
        self.actor = nn.Sequential(
            layer_init(nn.Linear(obs_shape, 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, envs.single_action_space.n), std=.01),
        )
        self.critic = nn.Sequential(
            layer_init(nn.Linear(obs_shape, 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, 64)),
            nn.Tanh(),
            layer_init(nn.Linear(64, 1), std=1),
        )



# + id="6PwPZHlLGDYu"
# %%
@t.inference_mode()
def compute_advantages(
    next_value: t.Tensor,
    next_done: t.Tensor,
    rewards: t.Tensor,
    values: t.Tensor,
    dones: t.Tensor,
    device: t.device,
    gamma: float,
    gae_lambda: float,
) -> t.Tensor:
    '''Compute advantages using Generalized Advantage Estimation.

    next_value: shape (1, env) - 
        represents V(s_{t+1}) which is needed for the last advantage term
    next_done: shape (env,)
    rewards: shape (t, env)
    values: shape (t, env)
    dones: shape (t, env)

    Return: shape (t, env)
    '''
    assert isinstance(next_value, t.Tensor)
    assert isinstance(next_done, t.Tensor)
    assert isinstance(rewards, t.Tensor)
    assert isinstance(values, t.Tensor)
    assert isinstance(dones, t.Tensor)
    t_max, n_env = values.shape
    next_values = t.concat((values[1:, ], next_value))
    next_dones = t.concat((dones[1:, ], next_done.unsqueeze(0)))
    deltas = rewards + gamma * next_values * (1.0 - next_dones) - values  
    adv = deltas.clone().to(device)
    for to_go in range(1, t_max):
        t_idx = t_max - to_go - 1
        t.testing.assert_close(adv[t_idx], deltas[t_idx])
        adv[t_idx] += (
            gamma * gae_lambda * adv[t_idx + 1] * (1.0 - next_dones[t_idx]) 
        )
    return adv



# + id="uYSSMnF-GPvm"
# %%
@dataclass
class Minibatch:
    obs: t.Tensor
    logprobs: t.Tensor
    actions: t.Tensor
    advantages: t.Tensor
    returns: t.Tensor
    values: t.Tensor

def minibatch_indexes(
    batch_size: int, minibatch_size: int
) -> List[np.ndarray]:
    '''
    Return a list of length (batch_size // minibatch_size) where 
    each element is an array of indexes into the batch.

    Each index should appear exactly once.
    '''
    assert batch_size % minibatch_size == 0
    n = batch_size // minibatch_size
    indices = np.arange(batch_size)
    np.random.shuffle(indices)
    return [indices[i::n] for i in range(n)]

if MAIN:
    test_minibatch_indexes(minibatch_indexes)

def make_minibatches(
    obs: t.Tensor,
    logprobs: t.Tensor,
    actions: t.Tensor,
    advantages: t.Tensor,
    values: t.Tensor,
    obs_shape: tuple,
    action_shape: tuple,
    batch_size: int,
    minibatch_size: int,
) -> List[Minibatch]:
    '''
    Flatten the environment and steps dimension into one batch dimension, 
    then shuffle and split into minibatches.
    '''
    n_steps, n_env = values.shape
    n_dim = n_steps * n_env
    indexes = minibatch_indexes(batch_size=batch_size, minibatch_size=minibatch_size)
    obs_flat = obs.reshape((batch_size,) + obs_shape)
    act_flat = actions.reshape((batch_size,) + action_shape)
    probs_flat = logprobs.reshape((batch_size,) + action_shape)
    adv_flat = advantages.reshape(n_dim)
    val_flat = values.reshape(n_dim)
    return [
        Minibatch(
            obs_flat[idx], probs_flat[idx], act_flat[idx], adv_flat[idx], 
            adv_flat[idx] + val_flat[idx], val_flat[idx]
        )
        for idx in indexes
    ]



# + id="K7wXDJ9MGOWu"
# %%
def calc_policy_loss(
    probs: Categorical, mb_action: t.Tensor, mb_advantages: t.Tensor, 
    mb_logprobs: t.Tensor, clip_coef: float
) -> t.Tensor:
    '''
    Return the policy loss, suitable for maximisation with gradient ascent.

    probs: 
        a distribution containing the actor's unnormalized logits of 
        shape (minibatch, num_actions)

    clip_coef: amount of clipping, denoted by epsilon in Eq 7.

    normalize: if true, normalize mb_advantages to have mean 0, variance 1
    '''
    adv_norm = (mb_advantages - mb_advantages.mean()) / mb_advantages.std()
    ratio = t.exp(probs.log_prob(mb_action)) / t.exp(mb_logprobs)
    min_left = ratio * adv_norm
    min_right = t.clip(ratio, 1 - clip_coef, 1 + clip_coef) * adv_norm
    return t.minimum(min_left, min_right).mean()



# + id="CmyxU6JWGMsG"
# %%
def calc_value_function_loss(
    critic: nn.Sequential, mb_obs: t.Tensor, mb_returns: t.Tensor, v_coef: float
) -> t.Tensor:
    '''Compute the value function portion of the loss function.
    Need to minimise this

    v_coef: 
        the coefficient for the value loss, which weights its contribution to 
        the overall loss. Denoted by c_1 in the paper.
    '''
    output = critic(mb_obs)
    return v_coef * (output - mb_returns).pow(2).mean() / 2



# + id="npyWs6xjGLkP"
# %%
def calc_entropy_loss(probs: Categorical, ent_coef: float):
    '''Return the entropy loss term.
    Need to maximise this

    ent_coef: 
        The coefficient for the entropy loss, which weights its contribution to the overall loss. 
        Denoted by c_2 in the paper.
    '''
    return probs.entropy().mean() * ent_coef

if MAIN:
    test_calc_entropy_bonus(calc_entropy_loss)


# + id="nqJeg1kZGKSG"
# %%
class PPOScheduler:
    def __init__(self, optimizer: optim.Adam, initial_lr: float, end_lr: float, num_updates: int):
        self.optimizer = optimizer
        self.initial_lr = initial_lr
        self.end_lr = end_lr
        self.num_updates = num_updates
        self.n_step_calls = 0

    def step(self):
        '''
        Implement linear learning rate decay so that after num_updates calls to step, 
        the learning rate is end_lr.
        '''
        lr = (
            self.initial_lr + 
            (self.end_lr - self.initial_lr) * self.n_step_calls / self.num_updates
        )
        for param in self.optimizer.param_groups:
            param['lr'] = lr
        self.n_step_calls += 1

def make_optimizer(
    agent: Agent, num_updates: int, initial_lr: float, end_lr: float
) -> Tuple[optim.Adam, PPOScheduler]:
    '''Return an appropriately configured Adam with its attached scheduler.'''
    optimizer = optim.Adam(agent.parameters(), lr=initial_lr, maximize=True)
    scheduler = PPOScheduler(
        optimizer=optimizer, initial_lr=initial_lr, end_lr=end_lr, num_updates=num_updates
    )
    return optimizer, scheduler



# + id="mgZ7-wsRCxJW"
@dataclass
class PPOArgs:
    exp_name: str = 'cartpole.py'    
    seed: int = 1
    torch_deterministic: bool = True
    cuda: bool = True
    track: bool = True
    wandb_project_name: str = "PPOCart"
    wandb_entity: str = None
    capture_video: bool = True
    env_id: str = "CartPole-v1"
    total_timesteps: int = 40_000
    learning_rate: float = 0.00025
    num_envs: int = 4
    num_steps: int = 128
    gamma: float = 0.99
    gae_lambda: float = 0.95
    num_minibatches: int = 4
    update_epochs: int = 4
    clip_coef: float = 0.2
    ent_coef: float = 0.01
    vf_coef: float = 0.5
    max_grad_norm: float = 0.5
    batch_size: int = 512
    minibatch_size: int = 128


# + id="xeIu-J3ZwGyq"
def wandb_init(name: str, args: PPOArgs):
    wandb.init(
        project=args.wandb_project_name,
        entity=args.wandb_entity,
        sync_tensorboard=True,
        config=vars(args),
        name=name,
        monitor_gym=True,
        save_code=True,
        settings=wandb.Settings(symlink=False)
    )


# + id="gMYWqhsryYHy"
def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


# + id="T9j_L0Wpyrgz"
@typechecked
def rollout_phase(
    next_obs: t.Tensor, next_done: t.Tensor,
    agent: Agent, envs: gym.vector.SyncVectorEnv,
    writer: SummaryWriter, device: torch.device,
    global_step: int,  action_shape: Tuple,
    num_envs: int, num_steps: int,
) -> Tuple[
    TT['envs'], 
    TT['envs'],
    TT['steps', 'envs'],
    TT['steps', 'envs'],
    TT['steps', 'envs'],
    TT['steps', 'envs'],
    TT['steps', 'envs'],
    TT['steps', 'envs'],
]:
    '''
    Output:
    
    next_obs, next_done, actions, dones, logprobs, obs, rewards, values
    '''
    obs = torch.zeros(
        (num_steps, num_envs) + 
        envs.single_observation_space.shape
    ).to(device)
    actions = torch.zeros(
        (num_steps, num_envs) + 
        action_shape
    ).to(device)
    logprobs = torch.zeros((num_steps, num_envs)).to(device)
    rewards = torch.zeros((num_steps, num_envs)).to(device)
    dones = torch.zeros((num_steps, num_envs)).to(device)
    values = torch.zeros((num_steps, num_envs)).to(device)
    for i in range(0, num_steps):
        # Rollout phase
        global_step += 1
        curr_obs = next_obs
        done = next_done
        with t.inference_mode():
            logits = agent.actor(curr_obs).detach()
            q_values = agent.critic(curr_obs).detach().squeeze(-1)
        prob = Categorical(logits=logits)
        action = prob.sample()
        logprob = prob.log_prob(action)
        next_obs, reward, next_done, info = envs.step(action.numpy())
        next_obs = t.tensor(next_obs, device=device)
        next_done = t.tensor(next_done, device=device)
        actions[i] = action
        dones[i] = done.detach().clone()
        logprobs[i] = logprob
        obs[i] = curr_obs
        rewards[i] = t.tensor(reward, device=device)
        values[i] = q_values

        if writer is not None and "episode" in info.keys():
            for item in info['episode']:
                if item is None or 'r' not in item.keys():
                    continue
                writer.add_scalar(
                    "charts/episodic_return", item["r"], global_step
                )
                writer.add_scalar(
                    "charts/episodic_length", item["l"], global_step
                )
                if global_step % 10 != 0:
                    continue
                print(
                    f"global_step={global_step}, episodic_return={item['r']}"
                )
                print("charts/episodic_return", item["r"], global_step)
                print("charts/episodic_length", item["l"], global_step)
    return (
        next_obs, next_done, actions, dones, logprobs, obs, rewards, values
    )


# + id="xdDhABIk5jyb"
def reset_env(envs, device):
    next_obs = torch.Tensor(envs.reset()).to(device)
    next_done = torch.zeros(envs.num_envs).to(device)
    return next_obs, next_done


# + id="5CoMpUVU7rFT"
def get_action_shape(envs: gym.vector.SyncVectorEnv):
    action_shape = envs.single_action_space.shape
    assert action_shape is not None
    assert isinstance(
        envs.single_action_space, Discrete
    ), "only discrete action space is supported"
    return action_shape


# + id="FHmn5kSUGFFu"
# %%
def train_ppo(args: PPOArgs):
    t0 = int(time.time())
    run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{t0}"
    if args.track:
        wandb_init(run_name, args)
    log_dir = wandb.run.dir
    writer = SummaryWriter(log_dir)
    writer.add_text(
        "hyperparameters",
        "|param|value|\n|-|-|\n%s" % "\n".join([f"|{key}|{value}|" 
        for (key, value) in vars(args).items()]),
    )
    set_seed(args.seed)
    torch.backends.cudnn.deterministic = args.torch_deterministic
    device = torch.device(
        "cuda" if torch.cuda.is_available() and args.cuda else "cpu"
    )
    envs = gym.vector.SyncVectorEnv([
        make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) 
        for i in range(args.num_envs)
    ])
    agent = Agent(envs).to(device)
    num_updates = args.total_timesteps // args.batch_size
    (optimizer, scheduler) = make_optimizer(
        agent, num_updates, args.learning_rate, 0.0
    )
    global_step = 0
    old_approx_kl = 0.0
    approx_kl = 0.0
    value_loss = t.tensor(0.0)
    policy_loss = t.tensor(0.0)
    entropy_loss = t.tensor(0.0)
    clipfracs = []
    info = []
    action_shape = get_action_shape(envs)
    next_obs, next_done = reset_env(envs, device)
    start_time = time.time()
    for _ in range(num_updates):
        rp = rollout_phase(
            next_obs, next_done, agent, envs, writer, device, global_step, 
            action_shape, args.num_envs, args.num_steps,
        )
        next_obs, next_done, actions, dones, logprobs, obs, rewards, values = rp
        with t.inference_mode():
            next_value = rearrange(agent.critic(next_obs), "env 1 -> 1 env")
        advantages = compute_advantages(
            next_value, next_done, rewards, values, dones, device, args.gamma, 
            args.gae_lambda
        )
        clipfracs.clear()
        mb: Minibatch
        for _ in range(args.update_epochs):
            minibatches = make_minibatches(
                obs,
                logprobs,
                actions,
                advantages,
                values,
                envs.single_observation_space.shape,
                action_shape,
                args.batch_size,
                args.minibatch_size,
            )
            for mb in minibatches:
                probs = Categorical(logits=agent.actor(mb.obs))
                value_loss = calc_value_function_loss(
                    agent.critic, mb.obs, mb.returns, args.vf_coef
                )
                policy_loss = calc_policy_loss(
                    probs, mb.actions, mb.advantages, mb.logprobs, 
                    args.clip_coef
                )
                entropy_loss = calc_entropy_loss(probs, args.ent_coef)
                loss = policy_loss + entropy_loss - value_loss
                loss.backward()
                nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
                optimizer.step()
                optimizer.zero_grad()
        
        scheduler.step()
        (y_pred, y_true) = (mb.values.cpu().numpy(), mb.returns.cpu().numpy())
        var_y = np.var(y_true)
        explained_var = (
            np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
        )
        with torch.no_grad():
            newlogprob: t.Tensor = probs.log_prob(mb.actions)
            logratio = newlogprob - mb.logprobs
            ratio = logratio.exp()
            old_approx_kl = (-logratio).mean().item()
            approx_kl = (ratio - 1 - logratio).mean().item()
            clipfracs += [
                ((ratio - 1.0).abs() > args.clip_coef).float().mean().item()
            ]
        writer.add_scalar(
            "charts/learning_rate", optimizer.param_groups[0]["lr"], 
            global_step
        )
        writer.add_scalar("losses/value_loss", value_loss.item(), global_step)
        writer.add_scalar("losses/policy_loss", policy_loss.item(), global_step)
        writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
        writer.add_scalar("losses/old_approx_kl", old_approx_kl, global_step)
        writer.add_scalar("losses/approx_kl", approx_kl, global_step)
        writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
        writer.add_scalar(
            "losses/explained_variance", explained_var, global_step
        )
        writer.add_scalar(
            "charts/SPS", 
            int(global_step / (time.time() - start_time)), 
            global_step
        )
        if global_step % 1000 == 0:
            print(
                "steps per second (SPS):", 
                int(global_step / (time.time() - start_time))
            )
            print("losses/value_loss", value_loss.item())
            print("losses/policy_loss", policy_loss.item())
            print("losses/entropy", entropy_loss.item())
    print(f'... training complete after {global_step} steps')
    envs.close()
    writer.close()
    if args.track:
        model_path = f'{wandb.run.dir}/model_state_dict.pt'
        print(f'Saving model to {model_path}')
        t.save(agent.state_dict(), model_path)
        wandb.finish()
        print('...wandb finished.')


# + id="-oZHTffJZP17" executionInfo={"status": "ok", "timestamp": 1677942433344, "user_tz": 0, "elapsed": 66678, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": ["c966d31ee30d43e0a8cc269a8a22b717", "294a378e56c44e4c9a3c58e8bf5b5f62", "473cc94ea22746f3a51e2186d973f741", "e3bb8c5a2c3841c2b33a7b8afb66a88f", "6133d8cbba964b7e8755e1c0691caf27", "1bf18f5fae9c4f58b2e360bc35251a94", "e820d38826494e248ca8974cccc1f338", "05eebe964b4b4c93b4aa0eac9ff865cb"]} outputId="0cfbb11c-831a-4622-8c01-afebae209d04"
# #%%wandb
if MAIN:
    args = PPOArgs()
    train_ppo(args)

# + colab={"base_uri": "https://localhost:8080/"} id="xJW6KL7QIj4s" executionInfo={"status": "ok", "timestamp": 1677942639015, "user_tz": 0, "elapsed": 105286, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="7c529849-6d46-4a6a-def5-e1c0ef652c64"
# !python demo.py

# + id="P7ZfUlAqImIr"
# !pip freeze > requirements.txt

# + id="x_bhyL3GLnhr"