Commit
Β·
6c5daeb
1
Parent(s):
a1fddda
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,10 @@ y = np.concatenate(
|
|
27 |
)
|
28 |
|
29 |
def load_hf_model_hub():
|
|
|
|
|
|
|
|
|
30 |
repo_id="sklearn-docs/anomaly-detection"
|
31 |
download_repo = "downloaded-model"
|
32 |
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
@@ -50,77 +54,34 @@ def visualize_input_data():
|
|
50 |
|
51 |
|
52 |
|
53 |
-
from sklearn.inspection import DecisionBoundaryDisplay
|
54 |
-
|
55 |
-
def plot_decision_boundary():
|
56 |
-
# progress(0, desc="Starting...")
|
57 |
-
# plt.clear()
|
58 |
-
plt.clf()
|
59 |
-
time.sleep(1)
|
60 |
-
|
61 |
-
disp = DecisionBoundaryDisplay.from_estimator(
|
62 |
-
loaded_model,
|
63 |
-
X,
|
64 |
-
response_method="predict",
|
65 |
-
alpha=0.5,
|
66 |
-
)
|
67 |
-
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
68 |
-
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
69 |
-
# disp.ax_.
|
70 |
-
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
71 |
-
handles, labels = scatter.legend_elements()
|
72 |
-
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
|
73 |
-
plt.axis("square")
|
74 |
-
|
75 |
-
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
76 |
-
# plt.savefig('decision_boundary.png',dpi=300, bbox_inches = "tight")
|
77 |
-
|
78 |
-
return fig1
|
79 |
-
|
80 |
-
def plot_path_length():
|
81 |
-
plt.clf()
|
82 |
-
|
83 |
-
time.sleep(1)
|
84 |
-
disp = DecisionBoundaryDisplay.from_estimator(
|
85 |
-
loaded_model,
|
86 |
-
X,
|
87 |
-
response_method="decision_function",
|
88 |
-
alpha=0.5,
|
89 |
-
)
|
90 |
-
fig2 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
91 |
-
scatter = disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
92 |
-
handles, labels = scatter.legend_elements()
|
93 |
-
disp.ax_.set_title("Path length decision boundary \nof IsolationForest")
|
94 |
-
plt.axis("square")
|
95 |
-
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
96 |
-
plt.colorbar(disp.ax_.collections[1])
|
97 |
-
# plt.savefig('plot_path.png',dpi=300, bbox_inches = "tight")
|
98 |
-
return fig2
|
99 |
-
|
100 |
|
101 |
|
102 |
title = " An example using IsolationForest for anomaly detection."
|
|
|
|
|
|
|
103 |
|
104 |
with gr.Blocks(title=title) as demo:
|
105 |
-
gr.Markdown(f"# {title}")
|
106 |
|
|
|
|
|
|
|
|
|
107 |
|
108 |
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
|
109 |
|
110 |
loaded_model = load_hf_model_hub()
|
111 |
|
112 |
with gr.Tab("Visualize Input dataset"):
|
113 |
-
|
114 |
-
|
115 |
|
116 |
with gr.Tab("Plot Decision Boundary"):
|
117 |
-
|
118 |
-
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
|
119 |
|
120 |
with gr.Tab("Plot Path"):
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
|
125 |
gr.Markdown( f"## Success")
|
126 |
demo.launch()
|
|
|
27 |
)
|
28 |
|
29 |
def load_hf_model_hub():
|
30 |
+
'''
|
31 |
+
Load the directory containing pretrained model
|
32 |
+
and files from the model repository
|
33 |
+
'''
|
34 |
repo_id="sklearn-docs/anomaly-detection"
|
35 |
download_repo = "downloaded-model"
|
36 |
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
|
|
54 |
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
title = " An example using IsolationForest for anomaly detection."
|
60 |
+
description1 = "The isolation forest is an Ensemble of Isolation trees and it isolates the datapoints using recursive random partitioning."
|
61 |
+
description2 = "In case of outliers the number of splits required is greater than those required for inliers."
|
62 |
+
description3 = "We will use the toy dataset as given in the scikit-learn page for Isolation Forest."
|
63 |
|
64 |
with gr.Blocks(title=title) as demo:
|
|
|
65 |
|
66 |
+
gr.Markdown(f"# {title}")
|
67 |
+
gr.Markdown(f"# {description1}")
|
68 |
+
gr.Markdown(f"# {description2}")
|
69 |
+
gr.Markdown(f"# {description3}")
|
70 |
|
71 |
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
|
72 |
|
73 |
loaded_model = load_hf_model_hub()
|
74 |
|
75 |
with gr.Tab("Visualize Input dataset"):
|
76 |
+
btn = gr.Button(value="Visualize input dataset")
|
77 |
+
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
78 |
|
79 |
with gr.Tab("Plot Decision Boundary"):
|
80 |
+
image_decision = gr.Image('./downloaded-model/decision_boundary.png')
|
|
|
81 |
|
82 |
with gr.Tab("Plot Path"):
|
83 |
+
image_path = gr.Image('./downloaded-model/plot_path.png')
|
84 |
+
|
|
|
85 |
|
86 |
gr.Markdown( f"## Success")
|
87 |
demo.launch()
|