Commit
Β·
a1fddda
1
Parent(s):
fd886b3
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,6 +26,14 @@ y = np.concatenate(
|
|
| 26 |
[np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
|
| 27 |
)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
#Visualize the data as a scatter plot
|
| 30 |
|
| 31 |
def visualize_input_data():
|
|
@@ -36,6 +44,7 @@ def visualize_input_data():
|
|
| 36 |
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
| 37 |
plt.title("Gaussian inliers with \nuniformly distributed outliers")
|
| 38 |
# plt.show()
|
|
|
|
| 39 |
return fig
|
| 40 |
|
| 41 |
|
|
@@ -44,7 +53,9 @@ def visualize_input_data():
|
|
| 44 |
from sklearn.inspection import DecisionBoundaryDisplay
|
| 45 |
|
| 46 |
def plot_decision_boundary():
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
time.sleep(1)
|
| 49 |
|
| 50 |
disp = DecisionBoundaryDisplay.from_estimator(
|
|
@@ -54,7 +65,8 @@ def plot_decision_boundary():
|
|
| 54 |
alpha=0.5,
|
| 55 |
)
|
| 56 |
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
| 57 |
-
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
|
|
|
| 58 |
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
| 59 |
handles, labels = scatter.legend_elements()
|
| 60 |
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
|
|
@@ -65,6 +77,26 @@ def plot_decision_boundary():
|
|
| 65 |
|
| 66 |
return fig1
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
title = " An example using IsolationForest for anomaly detection."
|
|
@@ -74,25 +106,20 @@ with gr.Blocks(title=title) as demo:
|
|
| 74 |
|
| 75 |
|
| 76 |
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
| 87 |
-
|
| 88 |
-
time.sleep(2)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
print(os.listdir(download_repo))
|
| 93 |
-
loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
|
| 94 |
-
btn_decision = gr.Button(value="Plot decision boundary")
|
| 95 |
-
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
|
| 96 |
|
| 97 |
|
| 98 |
gr.Markdown( f"## Success")
|
|
|
|
| 26 |
[np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
|
| 27 |
)
|
| 28 |
|
| 29 |
+
def load_hf_model_hub():
|
| 30 |
+
repo_id="sklearn-docs/anomaly-detection"
|
| 31 |
+
download_repo = "downloaded-model"
|
| 32 |
+
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
| 33 |
+
time.sleep(2)
|
| 34 |
+
loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
|
| 35 |
+
return loaded_model
|
| 36 |
+
|
| 37 |
#Visualize the data as a scatter plot
|
| 38 |
|
| 39 |
def visualize_input_data():
|
|
|
|
| 44 |
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
| 45 |
plt.title("Gaussian inliers with \nuniformly distributed outliers")
|
| 46 |
# plt.show()
|
| 47 |
+
# plt.clear()
|
| 48 |
return fig
|
| 49 |
|
| 50 |
|
|
|
|
| 53 |
from sklearn.inspection import DecisionBoundaryDisplay
|
| 54 |
|
| 55 |
def plot_decision_boundary():
|
| 56 |
+
# progress(0, desc="Starting...")
|
| 57 |
+
# plt.clear()
|
| 58 |
+
plt.clf()
|
| 59 |
time.sleep(1)
|
| 60 |
|
| 61 |
disp = DecisionBoundaryDisplay.from_estimator(
|
|
|
|
| 65 |
alpha=0.5,
|
| 66 |
)
|
| 67 |
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
| 68 |
+
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
| 69 |
+
# disp.ax_.
|
| 70 |
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
| 71 |
handles, labels = scatter.legend_elements()
|
| 72 |
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
|
|
|
|
| 77 |
|
| 78 |
return fig1
|
| 79 |
|
| 80 |
+
def plot_path_length():
|
| 81 |
+
plt.clf()
|
| 82 |
+
|
| 83 |
+
time.sleep(1)
|
| 84 |
+
disp = DecisionBoundaryDisplay.from_estimator(
|
| 85 |
+
loaded_model,
|
| 86 |
+
X,
|
| 87 |
+
response_method="decision_function",
|
| 88 |
+
alpha=0.5,
|
| 89 |
+
)
|
| 90 |
+
fig2 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
| 91 |
+
scatter = disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
| 92 |
+
handles, labels = scatter.legend_elements()
|
| 93 |
+
disp.ax_.set_title("Path length decision boundary \nof IsolationForest")
|
| 94 |
+
plt.axis("square")
|
| 95 |
+
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
| 96 |
+
plt.colorbar(disp.ax_.collections[1])
|
| 97 |
+
# plt.savefig('plot_path.png',dpi=300, bbox_inches = "tight")
|
| 98 |
+
return fig2
|
| 99 |
+
|
| 100 |
|
| 101 |
|
| 102 |
title = " An example using IsolationForest for anomaly detection."
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
|
| 109 |
+
|
| 110 |
+
loaded_model = load_hf_model_hub()
|
| 111 |
|
| 112 |
+
with gr.Tab("Visualize Input dataset"):
|
| 113 |
+
btn = gr.Button(value="Visualize input dataset")
|
| 114 |
+
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
| 115 |
|
| 116 |
+
with gr.Tab("Plot Decision Boundary"):
|
| 117 |
+
btn_decision = gr.Button(value="Plot decision boundary")
|
| 118 |
+
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
|
| 119 |
+
|
| 120 |
+
with gr.Tab("Plot Path"):
|
| 121 |
+
btn_path = gr.Button(value="Path length decision boundary")
|
| 122 |
+
btn_path.click(plot_path_length, outputs= gr.Plot(label='Path length decision boundary') )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
gr.Markdown( f"## Success")
|