Commit
Β·
a1fddda
1
Parent(s):
fd886b3
Update app.py
Browse files
app.py
CHANGED
@@ -26,6 +26,14 @@ y = np.concatenate(
|
|
26 |
[np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
#Visualize the data as a scatter plot
|
30 |
|
31 |
def visualize_input_data():
|
@@ -36,6 +44,7 @@ def visualize_input_data():
|
|
36 |
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
37 |
plt.title("Gaussian inliers with \nuniformly distributed outliers")
|
38 |
# plt.show()
|
|
|
39 |
return fig
|
40 |
|
41 |
|
@@ -44,7 +53,9 @@ def visualize_input_data():
|
|
44 |
from sklearn.inspection import DecisionBoundaryDisplay
|
45 |
|
46 |
def plot_decision_boundary():
|
47 |
-
|
|
|
|
|
48 |
time.sleep(1)
|
49 |
|
50 |
disp = DecisionBoundaryDisplay.from_estimator(
|
@@ -54,7 +65,8 @@ def plot_decision_boundary():
|
|
54 |
alpha=0.5,
|
55 |
)
|
56 |
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
57 |
-
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
|
|
58 |
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
59 |
handles, labels = scatter.legend_elements()
|
60 |
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
|
@@ -65,6 +77,26 @@ def plot_decision_boundary():
|
|
65 |
|
66 |
return fig1
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
title = " An example using IsolationForest for anomaly detection."
|
@@ -74,25 +106,20 @@ with gr.Blocks(title=title) as demo:
|
|
74 |
|
75 |
|
76 |
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
|
|
|
|
|
77 |
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
87 |
-
|
88 |
-
time.sleep(2)
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
print(os.listdir(download_repo))
|
93 |
-
loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
|
94 |
-
btn_decision = gr.Button(value="Plot decision boundary")
|
95 |
-
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
|
96 |
|
97 |
|
98 |
gr.Markdown( f"## Success")
|
|
|
26 |
[np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
|
27 |
)
|
28 |
|
29 |
+
def load_hf_model_hub():
|
30 |
+
repo_id="sklearn-docs/anomaly-detection"
|
31 |
+
download_repo = "downloaded-model"
|
32 |
+
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
33 |
+
time.sleep(2)
|
34 |
+
loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
|
35 |
+
return loaded_model
|
36 |
+
|
37 |
#Visualize the data as a scatter plot
|
38 |
|
39 |
def visualize_input_data():
|
|
|
44 |
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
45 |
plt.title("Gaussian inliers with \nuniformly distributed outliers")
|
46 |
# plt.show()
|
47 |
+
# plt.clear()
|
48 |
return fig
|
49 |
|
50 |
|
|
|
53 |
from sklearn.inspection import DecisionBoundaryDisplay
|
54 |
|
55 |
def plot_decision_boundary():
|
56 |
+
# progress(0, desc="Starting...")
|
57 |
+
# plt.clear()
|
58 |
+
plt.clf()
|
59 |
time.sleep(1)
|
60 |
|
61 |
disp = DecisionBoundaryDisplay.from_estimator(
|
|
|
65 |
alpha=0.5,
|
66 |
)
|
67 |
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
68 |
+
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
69 |
+
# disp.ax_.
|
70 |
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
71 |
handles, labels = scatter.legend_elements()
|
72 |
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
|
|
|
77 |
|
78 |
return fig1
|
79 |
|
80 |
+
def plot_path_length():
|
81 |
+
plt.clf()
|
82 |
+
|
83 |
+
time.sleep(1)
|
84 |
+
disp = DecisionBoundaryDisplay.from_estimator(
|
85 |
+
loaded_model,
|
86 |
+
X,
|
87 |
+
response_method="decision_function",
|
88 |
+
alpha=0.5,
|
89 |
+
)
|
90 |
+
fig2 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
91 |
+
scatter = disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
92 |
+
handles, labels = scatter.legend_elements()
|
93 |
+
disp.ax_.set_title("Path length decision boundary \nof IsolationForest")
|
94 |
+
plt.axis("square")
|
95 |
+
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
96 |
+
plt.colorbar(disp.ax_.collections[1])
|
97 |
+
# plt.savefig('plot_path.png',dpi=300, bbox_inches = "tight")
|
98 |
+
return fig2
|
99 |
+
|
100 |
|
101 |
|
102 |
title = " An example using IsolationForest for anomaly detection."
|
|
|
106 |
|
107 |
|
108 |
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
|
109 |
+
|
110 |
+
loaded_model = load_hf_model_hub()
|
111 |
|
112 |
+
with gr.Tab("Visualize Input dataset"):
|
113 |
+
btn = gr.Button(value="Visualize input dataset")
|
114 |
+
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
115 |
|
116 |
+
with gr.Tab("Plot Decision Boundary"):
|
117 |
+
btn_decision = gr.Button(value="Plot decision boundary")
|
118 |
+
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
|
119 |
+
|
120 |
+
with gr.Tab("Plot Path"):
|
121 |
+
btn_path = gr.Button(value="Path length decision boundary")
|
122 |
+
btn_path.click(plot_path_length, outputs= gr.Plot(label='Path length decision boundary') )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
gr.Markdown( f"## Success")
|