Commit
Β·
fd886b3
1
Parent(s):
64eb9a6
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import gradio as gr
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
from skops import hub_utils
|
11 |
import pickle
|
|
|
12 |
|
13 |
|
14 |
|
@@ -37,25 +38,22 @@ def visualize_input_data():
|
|
37 |
# plt.show()
|
38 |
return fig
|
39 |
|
40 |
-
|
41 |
-
repo_id="sklearn-docs/anomaly-detection"
|
42 |
-
download_repo = "downloaded-model"
|
43 |
-
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
44 |
-
# repo_copy = mkdtemp(prefix="skops")
|
45 |
-
# hub_utils.download(repo_id=repo_id, dst=repo_copy, token=token)
|
46 |
-
# print(os.listdir(download_repo))
|
47 |
|
48 |
|
49 |
from sklearn.inspection import DecisionBoundaryDisplay
|
50 |
|
51 |
-
def plot_decision_boundary(
|
|
|
|
|
|
|
52 |
disp = DecisionBoundaryDisplay.from_estimator(
|
53 |
-
|
54 |
X,
|
55 |
response_method="predict",
|
56 |
alpha=0.5,
|
57 |
)
|
58 |
-
|
59 |
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
60 |
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
61 |
handles, labels = scatter.legend_elements()
|
@@ -64,7 +62,8 @@ def plot_decision_boundary(classifier):
|
|
64 |
|
65 |
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
66 |
# plt.savefig('decision_boundary.png',dpi=300, bbox_inches = "tight")
|
67 |
-
|
|
|
68 |
|
69 |
|
70 |
|
@@ -80,22 +79,20 @@ with gr.Blocks(title=title) as demo:
|
|
80 |
|
81 |
btn = gr.Button(value="Visualize input dataset")
|
82 |
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
|
|
83 |
# download
|
84 |
repo_id="sklearn-docs/anomaly-detection"
|
85 |
download_repo = "downloaded-model"
|
86 |
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
87 |
-
if os.listdir(download_repo):
|
88 |
-
# hub_utils.download(repo_id=repo_id, dst=download_repo)
|
89 |
-
|
90 |
|
|
|
91 |
|
92 |
-
|
93 |
-
# print("Empty directory")
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
|
101 |
gr.Markdown( f"## Success")
|
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
from skops import hub_utils
|
11 |
import pickle
|
12 |
+
import time
|
13 |
|
14 |
|
15 |
|
|
|
38 |
# plt.show()
|
39 |
return fig
|
40 |
|
41 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
from sklearn.inspection import DecisionBoundaryDisplay
|
45 |
|
46 |
+
def plot_decision_boundary():
|
47 |
+
|
48 |
+
time.sleep(1)
|
49 |
+
|
50 |
disp = DecisionBoundaryDisplay.from_estimator(
|
51 |
+
loaded_model,
|
52 |
X,
|
53 |
response_method="predict",
|
54 |
alpha=0.5,
|
55 |
)
|
56 |
+
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
|
57 |
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
58 |
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
59 |
handles, labels = scatter.legend_elements()
|
|
|
62 |
|
63 |
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
64 |
# plt.savefig('decision_boundary.png',dpi=300, bbox_inches = "tight")
|
65 |
+
|
66 |
+
return fig1
|
67 |
|
68 |
|
69 |
|
|
|
79 |
|
80 |
btn = gr.Button(value="Visualize input dataset")
|
81 |
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
82 |
+
|
83 |
# download
|
84 |
repo_id="sklearn-docs/anomaly-detection"
|
85 |
download_repo = "downloaded-model"
|
86 |
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
|
|
|
|
|
|
87 |
|
88 |
+
time.sleep(2)
|
89 |
|
|
|
|
|
90 |
|
91 |
+
|
92 |
+
print(os.listdir(download_repo))
|
93 |
+
loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
|
94 |
+
btn_decision = gr.Button(value="Plot decision boundary")
|
95 |
+
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
|
96 |
|
97 |
|
98 |
gr.Markdown( f"## Success")
|