Spaces:
Sleeping
Sleeping
File size: 6,193 Bytes
f532f8a 3234b71 f299743 3234b71 f532f8a f299743 3234b71 f532f8a f299743 f532f8a 3234b71 f532f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import matplotlib.pyplot as plt
# from skops import hub_utils
import time
import pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoLarsIC
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_diabetes
def load_dataset():
X, y = load_diabetes(return_X_y=True, as_frame=True)
return X,y
def aic_pipeline(X,y):
lasso_lars_ic = make_pipeline(StandardScaler(), LassoLarsIC(criterion="aic")).fit(X, y)
return lasso_lars_ic
def zou_et_al_criterion_rescaling(criterion, n_samples, noise_variance):
"""Rescale the information criterion to follow the definition of Zou et al."""
return criterion - n_samples * np.log(2 * np.pi * noise_variance) - n_samples
def zou_et_all_aic(lasso_lars_ic):
aic_criterion = zou_et_al_criterion_rescaling(
lasso_lars_ic[-1].criterion_,
n_samples,
lasso_lars_ic[-1].noise_variance_,
)
index_alpha_path_aic = np.flatnonzero(
lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_
)[0]
return index_alpha_path_aic, aic_criterion
def zou_et_all_bic(lasso_lars_ic):
lasso_lars_ic.set_params(lassolarsic__criterion="bic").fit(X, y)
bic_criterion = zou_et_al_criterion_rescaling(
lasso_lars_ic[-1].criterion_,
n_samples,
lasso_lars_ic[-1].noise_variance_,
)
index_alpha_path_bic = np.flatnonzero(
lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_
)[0]
return index_alpha_path_bic, bic_criterion
def fn_assert_true():
assert index_alpha_path_bic == index_alpha_path_aic
def visualize_input_data():
fig = plt.figure(1, facecolor="w", figsize=(5, 5))
plt.plot(aic_criterion, color="tab:blue", marker="o", label="AIC criterion")
plt.plot(bic_criterion, color="tab:orange", marker="o", label="BIC criterion")
plt.vlines(
index_alpha_path_bic,
aic_criterion.min(),
aic_criterion.max(),
color="black",
linestyle="--",
label="Selected alpha",
)
plt.legend()
plt.ylabel("Information criterion")
plt.xlabel("Lasso model sequence")
_ = plt.title("Lasso model selection via AIC and BIC")
return fig
title = "Lasso model selection via information criteria"
import gradio as gr
import matplotlib.pyplot as plt
# from skops import hub_utils
import time
import pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoLarsIC
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_diabetes
def load_dataset():
X, y = load_diabetes(return_X_y=True, as_frame=True)
return X,y
def aic_pipeline(X,y):
lasso_lars_ic = make_pipeline(StandardScaler(), LassoLarsIC(criterion="aic")).fit(X, y)
return lasso_lars_ic
def zou_et_al_criterion_rescaling(criterion, n_samples, noise_variance):
"""Rescale the information criterion to follow the definition of Zou et al."""
return criterion - n_samples * np.log(2 * np.pi * noise_variance) - n_samples
def zou_et_all_aic(lasso_lars_ic):
aic_criterion = zou_et_al_criterion_rescaling(
lasso_lars_ic[-1].criterion_,
n_samples,
lasso_lars_ic[-1].noise_variance_,
)
index_alpha_path_aic = np.flatnonzero(
lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_
)[0]
return index_alpha_path_aic, aic_criterion
def zou_et_all_bic(lasso_lars_ic):
lasso_lars_ic.set_params(lassolarsic__criterion="bic").fit(X, y)
bic_criterion = zou_et_al_criterion_rescaling(
lasso_lars_ic[-1].criterion_,
n_samples,
lasso_lars_ic[-1].noise_variance_,
)
index_alpha_path_bic = np.flatnonzero(
lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_
)[0]
return index_alpha_path_bic, bic_criterion
def fn_assert_true():
assert index_alpha_path_bic == index_alpha_path_aic
def visualize_input_data():
fig = plt.figure(1, facecolor="w", figsize=(5, 5))
plt.plot(aic_criterion, color="tab:blue", marker="o", label="AIC criterion")
plt.plot(bic_criterion, color="tab:orange", marker="o", label="BIC criterion")
plt.vlines(
index_alpha_path_bic,
aic_criterion.min(),
aic_criterion.max(),
color="black",
linestyle="--",
label="Selected alpha",
)
plt.legend()
plt.ylabel("Information criterion")
plt.xlabel("Lasso model sequence")
_ = plt.title("Lasso model selection via AIC and BIC")
return fig
title = " Lasso model selection via information criteria"
with gr.Blocks(title=title) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(
"""
Probabilistic model selection using Information Criterion.
This method in statistics is useful because they dont require a hold out set test set(cross validation set).
AIC and BIC are two ways of scoring a model based on its log-likelihood and complexity.
It is important to note that the optimization to find alpha with LassoLarsIC relies on the AIC or BIC criteria
that are computed in-sample, thus on the training set directly.
This approach differs from the cross-validation procedure.
Also one of the drawbacks of these kinds of Probabilistic model is that same general statistic cannot be used across models.
Instead, a careful metric must be devised for each of the models separately.
The uncertainity of the model is not taken into account.
"""
)
gr.Markdown("See original example [here](https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-ic-py).")
##process
X,y = load_dataset()
lasso_lars_ic = aic_pipeline(X,y)
n_samples = X.shape[0]
index_alpha_path_aic, aic_criterion = zou_et_all_aic(lasso_lars_ic)
index_alpha_path_bic, bic_criterion = zou_et_all_bic(lasso_lars_ic)
fn_assert_true()
with gr.Tab("AIC BIC Criteria"):
btn = gr.Button(value="Plot AIC BIC Criteria w Regularization")
btn.click(visualize_input_data, outputs= gr.Plot(label='AIC BIC Criteria') )
demo.launch()
demo.launch() |