Spaces:
Runtime error
Runtime error
File size: 6,244 Bytes
6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 6674a4f 0415b11 a88bd97 0415b11 6674a4f 0415b11 6674a4f a88bd97 6674a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
"""Gradio demo for different clustering techiniques
Derived from https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
"""
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import (
AgglomerativeClustering, Birch, DBSCAN, KMeans, MeanShift, OPTICS, SpectralClustering, estimate_bandwidth
)
from sklearn.datasets import make_blobs, make_circles, make_moons
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
plt.style.use('seaborn')
SEED = 0
MAX_CLUSTERS = 10
N_SAMPLES = 1000
np.random.seed(SEED)
def normalize(X):
return StandardScaler().fit_transform(X)
def get_regular(n_clusters):
# spiral pattern
centers = [
[0, 0],
[1, 0],
[1, 1],
[0, 1],
[-1, 1],
[-1, 0],
[-1, -1],
[0, -1],
[1, -1],
[2, -1],
][:n_clusters]
assert len(centers) == n_clusters
X, labels = make_blobs(n_samples=N_SAMPLES, centers=centers, cluster_std=0.25, random_state=SEED)
return normalize(X), labels
def get_circles(n_clusters):
X, labels = make_circles(n_samples=N_SAMPLES, factor=0.5, noise=0.05, random_state=SEED)
return normalize(X), labels
def get_moons(n_clusters):
X, labels = make_moons(n_samples=N_SAMPLES, noise=0.05, random_state=SEED)
return normalize(X), labels
def get_noise(n_clusters):
X, labels = np.random.rand(N_SAMPLES, 2), np.zeros(N_SAMPLES)
return normalize(X), labels
def get_anisotropic(n_clusters):
X, labels = make_blobs(n_samples=N_SAMPLES, centers=n_clusters, random_state=170)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X = np.dot(X, transformation)
return X, labels
def get_varied(n_clusters):
cluster_std = [1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0][:n_clusters]
assert len(cluster_std) == n_clusters
X, labels = make_blobs(
n_samples=N_SAMPLES, centers=n_clusters, cluster_std=cluster_std, random_state=SEED
)
return normalize(X), labels
DATA_MAPPING = {
'regular': get_regular,
'circles': get_circles,
'moons': get_moons,
'noise': get_noise,
'anisotropic': get_anisotropic,
'varied': get_varied,
}
def get_kmeans(X, n_clusters, **kwargs):
model = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10, random_state=SEED)
model.set_params(**kwargs)
return model.fit(X)
def get_dbscan(X, n_clusters, **kwargs):
model = DBSCAN(eps=0.3)
model.set_params(**kwargs)
return model.fit(X)
def get_agglomerative(X, n_clusters, **kwargs):
connectivity = kneighbors_graph(
X, n_neighbors=n_clusters, include_self=False
)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)
model = AgglomerativeClustering(
n_clusters=n_clusters, linkage="ward", connectivity=connectivity
)
model.set_params(**kwargs)
return model.fit(X)
def get_meanshift(X, n_clusters, **kwargs):
bandwidth = estimate_bandwidth(X, quantile=0.3)
model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
model.set_params(**kwargs)
return model.fit(X)
def get_spectral(X, n_clusters, **kwargs):
model = SpectralClustering(
n_clusters=n_clusters,
eigen_solver="arpack",
affinity="nearest_neighbors",
)
model.set_params(**kwargs)
return model.fit(X)
def get_optics(X, n_clusters, **kwargs):
model = OPTICS(
min_samples=7,
xi=0.05,
min_cluster_size=0.1,
)
model.set_params(**kwargs)
return model.fit(X)
def get_birch(X, n_clusters, **kwargs):
model = Birch(n_clusters=n_clusters)
model.set_params(**kwargs)
return model.fit(X)
def get_gaussianmixture(X, n_clusters, **kwargs):
model = GaussianMixture(
n_components=n_clusters, covariance_type="full", random_state=SEED,
)
model.set_params(**kwargs)
return model.fit(X)
MODEL_MAPPING = {
'KMeans': get_kmeans,
'DBSCAN': get_dbscan,
'AgglomerativeClustering': get_agglomerative,
'MeanShift': get_meanshift,
'SpectralClustering': get_spectral,
'OPTICS': get_optics,
'Birch': get_birch,
'GaussianMixture': get_gaussianmixture,
}
def plot_clusters(ax, X, labels):
set_clusters = set(labels)
set_clusters.discard(-1) # -1 signifiies outliers, which we plot separately
for label in sorted(set_clusters):
idx = labels == label
if not sum(idx):
continue
ax.scatter(X[idx, 0], X[idx, 1])
# show outliers (if any)
idx = labels == -1
if sum(idx):
ax.scatter(X[idx, 0], X[idx, 1], c='k', marker='x')
ax.grid(None)
ax.set_xticks([])
ax.set_yticks([])
return ax
def cluster(clustering_algorithm: str, dataset: str, n_clusters: int):
n_clusters = int(n_clusters)
X, labels = DATA_MAPPING[dataset](n_clusters)
model = MODEL_MAPPING[clustering_algorithm](X, n_clusters=n_clusters)
if hasattr(model, "labels_"):
y_pred = model.labels_.astype(int)
else:
y_pred = model.predict(X)
fig, axes = plt.subplots(1, 2, figsize=(16, 8))
# show true labels in first panel
ax = axes[0]
plot_clusters(ax, X, labels)
ax.set_title("True clusters")
# show learned clusters in second panel
ax = axes[1]
plot_clusters(ax, X, y_pred)
ax.set_title(clustering_algorithm)
return fig
title = "Clustering with Scikit-learn"
description = (
"This example shows how different clustering algorithms work. Simply pick "
"the algorithm and the dataset to see how the clustering algorithms work."
)
demo = gr.Interface(
fn=cluster,
inputs=[
gr.Radio(
list(MODEL_MAPPING),
value="KMeans",
label="clustering algorithm"
),
gr.Radio(
list(DATA_MAPPING),
value="regular",
label="dataset"
),
gr.Slider(
minimum=1,
maximum=MAX_CLUSTERS,
value=4,
step=1,
)
],
title=title,
description=description,
outputs=gr.Plot(),
)
demo.launch()
|