clustering / app.py
Benjamin Bossan
Users can change the number of clusters
0415b11
raw
history blame
6.24 kB
"""Gradio demo for different clustering techiniques
Derived from https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
"""
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import (
AgglomerativeClustering, Birch, DBSCAN, KMeans, MeanShift, OPTICS, SpectralClustering, estimate_bandwidth
)
from sklearn.datasets import make_blobs, make_circles, make_moons
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
plt.style.use('seaborn')
SEED = 0
MAX_CLUSTERS = 10
N_SAMPLES = 1000
np.random.seed(SEED)
def normalize(X):
return StandardScaler().fit_transform(X)
def get_regular(n_clusters):
# spiral pattern
centers = [
[0, 0],
[1, 0],
[1, 1],
[0, 1],
[-1, 1],
[-1, 0],
[-1, -1],
[0, -1],
[1, -1],
[2, -1],
][:n_clusters]
assert len(centers) == n_clusters
X, labels = make_blobs(n_samples=N_SAMPLES, centers=centers, cluster_std=0.25, random_state=SEED)
return normalize(X), labels
def get_circles(n_clusters):
X, labels = make_circles(n_samples=N_SAMPLES, factor=0.5, noise=0.05, random_state=SEED)
return normalize(X), labels
def get_moons(n_clusters):
X, labels = make_moons(n_samples=N_SAMPLES, noise=0.05, random_state=SEED)
return normalize(X), labels
def get_noise(n_clusters):
X, labels = np.random.rand(N_SAMPLES, 2), np.zeros(N_SAMPLES)
return normalize(X), labels
def get_anisotropic(n_clusters):
X, labels = make_blobs(n_samples=N_SAMPLES, centers=n_clusters, random_state=170)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X = np.dot(X, transformation)
return X, labels
def get_varied(n_clusters):
cluster_std = [1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0][:n_clusters]
assert len(cluster_std) == n_clusters
X, labels = make_blobs(
n_samples=N_SAMPLES, centers=n_clusters, cluster_std=cluster_std, random_state=SEED
)
return normalize(X), labels
DATA_MAPPING = {
'regular': get_regular,
'circles': get_circles,
'moons': get_moons,
'noise': get_noise,
'anisotropic': get_anisotropic,
'varied': get_varied,
}
def get_kmeans(X, n_clusters, **kwargs):
model = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10, random_state=SEED)
model.set_params(**kwargs)
return model.fit(X)
def get_dbscan(X, n_clusters, **kwargs):
model = DBSCAN(eps=0.3)
model.set_params(**kwargs)
return model.fit(X)
def get_agglomerative(X, n_clusters, **kwargs):
connectivity = kneighbors_graph(
X, n_neighbors=n_clusters, include_self=False
)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)
model = AgglomerativeClustering(
n_clusters=n_clusters, linkage="ward", connectivity=connectivity
)
model.set_params(**kwargs)
return model.fit(X)
def get_meanshift(X, n_clusters, **kwargs):
bandwidth = estimate_bandwidth(X, quantile=0.3)
model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
model.set_params(**kwargs)
return model.fit(X)
def get_spectral(X, n_clusters, **kwargs):
model = SpectralClustering(
n_clusters=n_clusters,
eigen_solver="arpack",
affinity="nearest_neighbors",
)
model.set_params(**kwargs)
return model.fit(X)
def get_optics(X, n_clusters, **kwargs):
model = OPTICS(
min_samples=7,
xi=0.05,
min_cluster_size=0.1,
)
model.set_params(**kwargs)
return model.fit(X)
def get_birch(X, n_clusters, **kwargs):
model = Birch(n_clusters=n_clusters)
model.set_params(**kwargs)
return model.fit(X)
def get_gaussianmixture(X, n_clusters, **kwargs):
model = GaussianMixture(
n_components=n_clusters, covariance_type="full", random_state=SEED,
)
model.set_params(**kwargs)
return model.fit(X)
MODEL_MAPPING = {
'KMeans': get_kmeans,
'DBSCAN': get_dbscan,
'AgglomerativeClustering': get_agglomerative,
'MeanShift': get_meanshift,
'SpectralClustering': get_spectral,
'OPTICS': get_optics,
'Birch': get_birch,
'GaussianMixture': get_gaussianmixture,
}
def plot_clusters(ax, X, labels):
set_clusters = set(labels)
set_clusters.discard(-1) # -1 signifiies outliers, which we plot separately
for label in sorted(set_clusters):
idx = labels == label
if not sum(idx):
continue
ax.scatter(X[idx, 0], X[idx, 1])
# show outliers (if any)
idx = labels == -1
if sum(idx):
ax.scatter(X[idx, 0], X[idx, 1], c='k', marker='x')
ax.grid(None)
ax.set_xticks([])
ax.set_yticks([])
return ax
def cluster(clustering_algorithm: str, dataset: str, n_clusters: int):
n_clusters = int(n_clusters)
X, labels = DATA_MAPPING[dataset](n_clusters)
model = MODEL_MAPPING[clustering_algorithm](X, n_clusters=n_clusters)
if hasattr(model, "labels_"):
y_pred = model.labels_.astype(int)
else:
y_pred = model.predict(X)
fig, axes = plt.subplots(1, 2, figsize=(16, 8))
# show true labels in first panel
ax = axes[0]
plot_clusters(ax, X, labels)
ax.set_title("True clusters")
# show learned clusters in second panel
ax = axes[1]
plot_clusters(ax, X, y_pred)
ax.set_title(clustering_algorithm)
return fig
title = "Clustering with Scikit-learn"
description = (
"This example shows how different clustering algorithms work. Simply pick "
"the algorithm and the dataset to see how the clustering algorithms work."
)
demo = gr.Interface(
fn=cluster,
inputs=[
gr.Radio(
list(MODEL_MAPPING),
value="KMeans",
label="clustering algorithm"
),
gr.Radio(
list(DATA_MAPPING),
value="regular",
label="dataset"
),
gr.Slider(
minimum=1,
maximum=MAX_CLUSTERS,
value=4,
step=1,
)
],
title=title,
description=description,
outputs=gr.Plot(),
)
demo.launch()