RamAnanth1's picture
Update app.py
2df0d19
raw
history blame
4.78 kB
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import matplotlib.cm as cm
from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
description = f"""
## Description
This demo can be used to evaluate the ability of k-means initializations strategies to make the algorithm convergence robust
"""
# k-means models can do several random inits so as to be able to trade
# CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])
# Datasets generation parameters
scale = 0.1
def make_data(random_state, n_samples_per_center, grid_size, scale):
random_state = check_random_state(random_state)
centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)])
n_clusters_true, n_features = centers.shape
noise = random_state.normal(
scale=scale, size=(n_samples_per_center, centers.shape[1])
)
X = np.concatenate([c + noise for c in centers])
y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)])
return shuffle(X, y, random_state=random_state)
def quant_evaluation(n_runs, n_samples_per_center, grid_size):
n_clusters = grid_size**2
plt.figure()
plots = []
legends = []
cases = [
(KMeans, "k-means++", {}, "^-"),
(KMeans, "random", {}, "o-"),
(MiniBatchKMeans, "k-means++", {"max_no_improvement": 3}, "x-"),
(MiniBatchKMeans, "random", {"max_no_improvement": 3, "init_size": 500}, "d-"),
]
for factory, init, params, format in cases:
print("Evaluation of %s with %s init" % (factory.__name__, init))
inertia = np.empty((len(n_init_range), n_runs))
for run_id in range(n_runs):
X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
for i, n_init in enumerate(n_init_range):
km = factory(
n_clusters=n_clusters,
init=init,
random_state=run_id,
n_init=n_init,
**params,
).fit(X)
inertia[i, run_id] = km.inertia_
p = plt.errorbar(
n_init_range, inertia.mean(axis=1), inertia.std(axis=1), fmt=format
)
plots.append(p[0])
legends.append("%s with %s init" % (factory.__name__, init))
plt.xlabel("n_init")
plt.ylabel("inertia")
plt.legend(plots, legends)
plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
return plt
def qual_evaluation(random_state, n_samples_per_center, grid_size):
n_clusters = grid_size**2
X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(
n_clusters=n_clusters, init="random", n_init=1, random_state=random_state
).fit(X)
plt.figure()
for k in range(n_clusters):
my_members = km.labels_ == k
color = cm.nipy_spectral(float(k) / n_clusters, 1)
plt.plot(X[my_members, 0], X[my_members, 1], ".", c=color)
cluster_center = km.cluster_centers_[k]
plt.plot(
cluster_center[0],
cluster_center[1],
"o",
markerfacecolor=color,
markeredgecolor="k",
markersize=6,
)
plt.title(
"Example cluster allocation with a single random init\nwith MiniBatchKMeans"
)
return plt
with gr.Blocks(theme=theme) as demo:
gr.Markdown('''
<h1 style='text-align: center'>Empirical evaluation of the impact of k-means initialization πŸ“Š</h1>
''')
gr.Markdown(description)
with gr.Row():
n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
random_state = gr.Slider(minimum=0, maximum=2000, step=5, value=0, label="Random state")
n_samples_per_center = gr.Slider(minimum=50, maximum=200, step=10, value=100, label="Number of Samples per Center")
grid_size = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Grid Size")
with gr.Row():
run_button = gr.Button('Evaluate Inertia')
run_button_qual = gr.Button('Generate Cluster Allocations')
with gr.Row():
plot_inertia = gr.Plot()
plot_vis = gr.Plot()
run_button.click(fn=quant_evaluation, inputs=[n_runs, n_samples_per_center, grid_size], outputs=plot_inertia)
run_button_qual.click(fn=qual_evaluation, inputs=[random_state, n_samples_per_center, grid_size], outputs=plot_vis)
demo.launch()