RamAnanth1 commited on
Commit
2df0d19
·
1 Parent(s): c972581

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -13
app.py CHANGED
@@ -20,18 +20,12 @@ description = f"""
20
  This demo can be used to evaluate the ability of k-means initializations strategies to make the algorithm convergence robust
21
  """
22
 
23
- # TODO: Make the below parameters user passable
24
- random_state = np.random.RandomState(0)
25
-
26
  # k-means models can do several random inits so as to be able to trade
27
  # CPU time for convergence robustness
28
  n_init_range = np.array([1, 5, 10, 15, 20])
29
 
30
  # Datasets generation parameters
31
- n_samples_per_center = 100
32
- grid_size = 3
33
  scale = 0.1
34
- n_clusters = grid_size**2
35
 
36
  def make_data(random_state, n_samples_per_center, grid_size, scale):
37
  random_state = check_random_state(random_state)
@@ -46,7 +40,10 @@ def make_data(random_state, n_samples_per_center, grid_size, scale):
46
  y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)])
47
  return shuffle(X, y, random_state=random_state)
48
 
49
- def quant_evaluation(n_runs):
 
 
 
50
  plt.figure()
51
  plots = []
52
  legends = []
@@ -85,7 +82,8 @@ def quant_evaluation(n_runs):
85
  plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
86
  return plt
87
 
88
- def qual_evaluation():
 
89
  X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
90
  km = MiniBatchKMeans(
91
  n_clusters=n_clusters, init="random", n_init=1, random_state=random_state
@@ -115,13 +113,19 @@ with gr.Blocks(theme=theme) as demo:
115
  <h1 style='text-align: center'>Empirical evaluation of the impact of k-means initialization 📊</h1>
116
  ''')
117
  gr.Markdown(description)
118
- n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
119
- run_button = gr.Button('Evaluate')
120
- run_button_qual = gr.Button('Generate Cluster Allocations')
 
 
 
 
 
 
121
  with gr.Row():
122
  plot_inertia = gr.Plot()
123
  plot_vis = gr.Plot()
124
- run_button.click(fn=quant_evaluation, inputs=[n_runs], outputs=plot_inertia)
125
- run_button_qual.click(fn=qual_evaluation, inputs=[], outputs=plot_vis)
126
 
127
  demo.launch()
 
20
  This demo can be used to evaluate the ability of k-means initializations strategies to make the algorithm convergence robust
21
  """
22
 
 
 
 
23
  # k-means models can do several random inits so as to be able to trade
24
  # CPU time for convergence robustness
25
  n_init_range = np.array([1, 5, 10, 15, 20])
26
 
27
  # Datasets generation parameters
 
 
28
  scale = 0.1
 
29
 
30
  def make_data(random_state, n_samples_per_center, grid_size, scale):
31
  random_state = check_random_state(random_state)
 
40
  y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)])
41
  return shuffle(X, y, random_state=random_state)
42
 
43
+ def quant_evaluation(n_runs, n_samples_per_center, grid_size):
44
+
45
+ n_clusters = grid_size**2
46
+
47
  plt.figure()
48
  plots = []
49
  legends = []
 
82
  plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
83
  return plt
84
 
85
+ def qual_evaluation(random_state, n_samples_per_center, grid_size):
86
+ n_clusters = grid_size**2
87
  X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
88
  km = MiniBatchKMeans(
89
  n_clusters=n_clusters, init="random", n_init=1, random_state=random_state
 
113
  <h1 style='text-align: center'>Empirical evaluation of the impact of k-means initialization 📊</h1>
114
  ''')
115
  gr.Markdown(description)
116
+ with gr.Row():
117
+ n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
118
+ random_state = gr.Slider(minimum=0, maximum=2000, step=5, value=0, label="Random state")
119
+ n_samples_per_center = gr.Slider(minimum=50, maximum=200, step=10, value=100, label="Number of Samples per Center")
120
+ grid_size = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Grid Size")
121
+
122
+ with gr.Row():
123
+ run_button = gr.Button('Evaluate Inertia')
124
+ run_button_qual = gr.Button('Generate Cluster Allocations')
125
  with gr.Row():
126
  plot_inertia = gr.Plot()
127
  plot_vis = gr.Plot()
128
+ run_button.click(fn=quant_evaluation, inputs=[n_runs, n_samples_per_center, grid_size], outputs=plot_inertia)
129
+ run_button_qual.click(fn=qual_evaluation, inputs=[random_state, n_samples_per_center, grid_size], outputs=plot_vis)
130
 
131
  demo.launch()