RamAnanth1 commited on
Commit
c79b7a6
·
1 Parent(s): 2df0d19

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -1
app.py CHANGED
@@ -17,7 +17,16 @@ theme = gr.themes.Monochrome(
17
 
18
  description = f"""
19
  ## Description
20
- This demo can be used to evaluate the ability of k-means initializations strategies to make the algorithm convergence robust
 
 
 
 
 
 
 
 
 
21
  """
22
 
23
  # k-means models can do several random inits so as to be able to trade
@@ -116,6 +125,8 @@ with gr.Blocks(theme=theme) as demo:
116
  with gr.Row():
117
  n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
118
  random_state = gr.Slider(minimum=0, maximum=2000, step=5, value=0, label="Random state")
 
 
119
  n_samples_per_center = gr.Slider(minimum=50, maximum=200, step=10, value=100, label="Number of Samples per Center")
120
  grid_size = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Grid Size")
121
 
 
17
 
18
  description = f"""
19
  ## Description
20
+ This demo can be used to evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the
21
+ relative standard deviation of the inertia of the clustering (i.e. the sum of squared distances to the nearest cluster center).
22
+
23
+ The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced.
24
+
25
+ The Inertia plot shows the best inertia reached for each combination of the model (KMeans or MiniBatchKMeans), and either random initialization or k-means++ initialization.
26
+
27
+ The Cluster Allocation plot demonstrates one single run of the MiniBatchKMeans estimator using a single random initialization.
28
+
29
+ The demo is based on the [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_stability_low_dim_dense.html#sphx-glr-auto-examples-cluster-plot-kmeans-stability-low-dim-dense-py)
30
  """
31
 
32
  # k-means models can do several random inits so as to be able to trade
 
125
  with gr.Row():
126
  n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
127
  random_state = gr.Slider(minimum=0, maximum=2000, step=5, value=0, label="Random state")
128
+
129
+ with gr.Row():
130
  n_samples_per_center = gr.Slider(minimum=50, maximum=200, step=10, value=100, label="Number of Samples per Center")
131
  grid_size = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Grid Size")
132