File size: 8,250 Bytes
d79693f
2efc1aa
d79693f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efc1aa
 
 
 
 
 
d79693f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efc1aa
 
 
 
 
 
 
 
 
d79693f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efc1aa
d79693f
 
 
 
 
2efc1aa
d79693f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import math
import json
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import RandomizedSearchCV
from sklearn.naive_bayes import ComplementNB
from sklearn.pipeline import Pipeline

CATEGORIES = [
    "alt.atheism",
    "comp.graphics",
    "comp.os.ms-windows.misc",
    "comp.sys.ibm.pc.hardware",
    "comp.sys.mac.hardware",
    "comp.windows.x",
    "misc.forsale",
    "rec.autos",
    "rec.motorcycles",
    "rec.sport.baseball",
    "rec.sport.hockey",
    "sci.crypt",
    "sci.electronics",
    "sci.med",
    "sci.space",
    "soc.religion.christian",
    "talk.politics.guns",
    "talk.politics.mideast",
    "talk.politics.misc",
    "talk.religion.misc",
]


PARAMETER_GRID = {
    "vect__max_df": (0.2, 0.4, 0.6, 0.8, 1.0),
    "vect__min_df": (1, 3, 5, 10),
    "vect__ngram_range": ((1, 1), (1, 2)),  # unigrams or bigrams
    "vect__norm": ("l1", "l2"),
    "clf__alpha": np.logspace(-6, 6, 13),
}


def shorten_param(param_name):
    """Remove components' prefixes in param_name."""
    if "__" in param_name:
        return param_name.rsplit("__", 1)[1]
    return param_name


def train_model(categories):
    pipeline = Pipeline(
        [
            ("vect", TfidfVectorizer()),
            ("clf", ComplementNB()),
        ]
    )

    data_train = fetch_20newsgroups(
        subset="train",
        categories=categories,
        shuffle=True,
        random_state=42,
        remove=("headers", "footers", "quotes"),
    )

    data_test = fetch_20newsgroups(
        subset="test",
        categories=categories,
        shuffle=True,
        random_state=42,
        remove=("headers", "footers", "quotes"),
    )

    pipeline = Pipeline(
        [
            ("vect", TfidfVectorizer()),
            ("clf", ComplementNB()),
        ]
    )

    random_search = RandomizedSearchCV(
        estimator=pipeline,
        param_distributions=PARAMETER_GRID,
        n_iter=40,
        random_state=0,
        n_jobs=2,
        verbose=1,
    )

    random_search.fit(data_train.data, data_train.target)
    best_parameters = json.dumps(
        random_search.best_estimator_.get_params(),
        indent=4,
        sort_keys=True,
        default=str,
    )

    test_accuracy = random_search.score(data_test.data, data_test.target)

    cv_results = pd.DataFrame(random_search.cv_results_)
    cv_results = cv_results.rename(shorten_param, axis=1)

    param_names = [shorten_param(name) for name in PARAMETER_GRID.keys()]
    labels = {
        "mean_score_time": "CV Score time (s)",
        "mean_test_score": "CV score (accuracy)",
    }
    fig = px.scatter(
        cv_results,
        x="mean_score_time",
        y="mean_test_score",
        error_x="std_score_time",
        error_y="std_test_score",
        hover_data=param_names,
        labels=labels,
    )
    fig.update_layout(
        title={
            "text": "trade-off between scoring time and mean test score",
            "y": 0.95,
            "x": 0.5,
            "xanchor": "center",
            "yanchor": "top",
        }
    )

    column_results = param_names + ["mean_test_score", "mean_score_time"]

    transform_funcs = dict.fromkeys(column_results, lambda x: x)
    # Using a logarithmic scale for alpha
    transform_funcs["alpha"] = math.log10
    # L1 norms are mapped to index 1, and L2 norms to index 2
    transform_funcs["norm"] = lambda x: 2 if x == "l2" else 1
    # Unigrams are mapped to index 1 and bigrams to index 2
    transform_funcs["ngram_range"] = lambda x: x[1]

    fig2 = px.parallel_coordinates(
        cv_results[column_results].apply(transform_funcs),
        color="mean_test_score",
        color_continuous_scale=px.colors.sequential.Viridis_r,
        labels=labels,
    )
    fig2.update_layout(
        title={
            "text": "Parallel coordinates plot of text classifier pipeline",
            "y": 0.99,
            "x": 0.5,
            "xanchor": "center",
            "yanchor": "top",
        }
    )

    return fig, fig2, best_parameters, test_accuracy


DESCRIPTION_PART1 = [
    "The dataset used in this example is",
    "[The 20 newsgroups text dataset](https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset)",
    "which will be automatically downloaded, cached and reused for the document classification example.",
]

DESCRIPTION_PART2 = [
    "In this example, we tune the hyperparameters of",
    "a particular classifier using a",
    "[RandomizedSearchCV](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV).",
    "For a demo on the performance of some other classifiers, see the",
    "[Classification of text documents using sparse features](https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py) notebook.",
]

CATEGORY_SELECTION_DESCRIPTION = [
    "The task of text classification is easier when there is little overlap between the characteristic terms ",
    "of different topics. This is because the presence of common terms can make it difficult to distinguish between ",
    "different topics. On the other hand, when there is little overlap between the characteristic terms of different ",
    "topics, the task of text classification becomes easier, as the unique terms of each topic provide a solid basis ",
    "for accurately classifying the document into its respective category. Therefore, careful selection of characteristic",
    " terms for each topic is crucial to ensure accuracy in text classification."
]

AUTHOR = """
Created by [@dominguesm](https://huggingface.co/dominguesm) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_text_feature_extraction.html)
"""


with gr.Blocks(theme=gr.themes.Soft()) as app:
    with gr.Row():
        with gr.Column():
            gr.Markdown("# Sample pipeline for text feature extraction and evaluation")
            gr.Markdown(" ".join(DESCRIPTION_PART1))
            gr.Markdown(" ".join(DESCRIPTION_PART2))
            gr.Markdown(AUTHOR)

    with gr.Row():
        with gr.Column():
            gr.Markdown("""## CATEGORY SELECTION""")
            gr.Markdown("".join(CATEGORY_SELECTION_DESCRIPTION))
            drop_categories = gr.Dropdown(
                CATEGORIES,
                value=["alt.atheism", "talk.religion.misc"],
                multiselect=True,
                label="Categories",
                info="Please select up to two categories that you want to receive training on.",
                max_choices=2,
                interactive=True,
            )
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
            ## PARAMETERS GRID
            ```python
            {
                'clf__alpha': array(
                    [1.e-06, 1.e-05, 1.e-04,...]
                ),
                'vect__max_df': (0.2, 0.4, 0.6, 0.8, 1.0),
                'vect__min_df': (1, 3, 5, 10),
                'vect__ngram_range': ((1, 1), (1, 2)),
                'vect__norm': ('l1', 'l2')
            }
            ```
            ## MODEL PIPELINE
            ```python
            pipeline = Pipeline(
                [
                    ("vect", TfidfVectorizer()),
                    ("clf", ComplementNB()),
                ]
            )
            ```
            """
            )
    with gr.Row():
        with gr.Column():
            gr.Markdown("""## TRAINING""")
            with gr.Row():
                brn_train = gr.Button("Train").style(container=False)

    gr.Markdown("## RESULTS")
    with gr.Row():
        best_parameters = gr.Textbox(label="Best parameters")
        test_accuracy = gr.Textbox(label="Test accuracy")

    plot_trade = gr.Plot(label="")
    plot_coordinates = gr.Plot(label="")

    brn_train.click(
        train_model,
        [drop_categories],
        [plot_trade, plot_coordinates, best_parameters, test_accuracy],
    )

app.launch()