Spaces:
Sleeping
Sleeping
File size: 11,353 Bytes
2f3aac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import imageio
import numpy as np
from typing import Union
import decord
decord.bridge.set_bridge('torch')
import torch
import torchvision
import PIL
from typing import List
from tqdm import tqdm
from einops import rearrange
import torchvision.transforms.functional as F
import random
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_videos_grid_pil(videos: List[PIL.Image.Image], path: str, rescale=False, n_rows=4, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def read_video(video_path, video_length, width=512, height=512, frame_rate=None):
vr = decord.VideoReader(video_path, width=width, height=height)
if frame_rate is None:
frame_rate = max(1, len(vr) // video_length)
sample_index = list(range(0, len(vr), frame_rate))[:video_length]
video = vr.get_batch(sample_index)
video = rearrange(video, "f h w c -> f c h w")
video = (video / 127.5 - 1.0)
return video
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
"""optical flow and trajectories sampling"""
def preprocess(img1_batch, img2_batch, transforms):
img1_batch = F.resize(img1_batch, size=[512, 512], antialias=False)
img2_batch = F.resize(img2_batch, size=[512, 512], antialias=False)
return transforms(img1_batch, img2_batch)
def keys_with_same_value(dictionary):
result = {}
for key, value in dictionary.items():
if value not in result:
result[value] = [key]
else:
result[value].append(key)
conflict_points = {}
for k in result.keys():
if len(result[k]) > 1:
conflict_points[k] = result[k]
return conflict_points
def find_duplicates(input_list):
seen = set()
duplicates = set()
for item in input_list:
if item in seen:
duplicates.add(item)
else:
seen.add(item)
return list(duplicates)
def neighbors_index(point, window_size, H, W):
"""return the spatial neighbor indices"""
t, x, y = point
neighbors = []
for i in range(-window_size, window_size + 1):
for j in range(-window_size, window_size + 1):
if i == 0 and j == 0:
continue
if x + i < 0 or x + i >= H or y + j < 0 or y + j >= W:
continue
neighbors.append((t, x + i, y + j))
return neighbors
@torch.no_grad()
def sample_trajectories(frames, device):
from torchvision.models.optical_flow import Raft_Large_Weights
from torchvision.models.optical_flow import raft_large
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
# frames, _, _ = torchvision.io.read_video(str(video_path), output_format="TCHW")
clips = list(range(len(frames)))
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
model = model.eval()
finished_trajectories = []
current_frames, next_frames = preprocess(frames[clips[:-1]], frames[clips[1:]], transforms)
list_of_flows = model(current_frames.to(device), next_frames.to(device))
predicted_flows = list_of_flows[-1]
predicted_flows = predicted_flows/512
resolutions = [64, 32, 16, 8]
res = {}
window_sizes = {64: 2,
32: 1,
16: 1,
8: 1}
for resolution in resolutions:
print("="*30)
trajectories = {}
predicted_flow_resolu = torch.round(resolution*torch.nn.functional.interpolate(predicted_flows, scale_factor=(resolution/512, resolution/512)))
T = predicted_flow_resolu.shape[0]+1
H = predicted_flow_resolu.shape[2]
W = predicted_flow_resolu.shape[3]
is_activated = torch.zeros([T, H, W], dtype=torch.bool)
for t in range(T-1):
flow = predicted_flow_resolu[t]
for h in range(H):
for w in range(W):
if not is_activated[t, h, w]:
is_activated[t, h, w] = True
# this point has not been traversed, start new trajectory
x = h + int(flow[1, h, w])
y = w + int(flow[0, h, w])
if x >= 0 and x < H and y >= 0 and y < W:
# trajectories.append([(t, h, w), (t+1, x, y)])
trajectories[(t, h, w)]= (t+1, x, y)
conflict_points = keys_with_same_value(trajectories)
for k in conflict_points:
index_to_pop = random.randint(0, len(conflict_points[k]) - 1)
conflict_points[k].pop(index_to_pop)
for point in conflict_points[k]:
if point[0] != T-1:
trajectories[point]= (-1, -1, -1) # stupid padding with (-1, -1, -1)
active_traj = []
all_traj = []
for t in range(T):
pixel_set = {(t, x//H, x%H):0 for x in range(H*W)}
new_active_traj = []
for traj in active_traj:
if traj[-1] in trajectories:
v = trajectories[traj[-1]]
new_active_traj.append(traj + [v])
pixel_set[v] = 1
else:
all_traj.append(traj)
active_traj = new_active_traj
active_traj+=[[pixel] for pixel in pixel_set if pixel_set[pixel] == 0]
all_traj += active_traj
useful_traj = [i for i in all_traj if len(i)>1]
for idx in range(len(useful_traj)):
if useful_traj[idx][-1] == (-1, -1, -1):
useful_traj[idx] = useful_traj[idx][:-1]
print("how many points in all trajectories for resolution{}?".format(resolution), sum([len(i) for i in useful_traj]))
print("how many points in the video for resolution{}?".format(resolution), T*H*W)
# validate if there are no duplicates in the trajectories
trajs = []
for traj in useful_traj:
trajs = trajs + traj
assert len(find_duplicates(trajs)) == 0, "There should not be duplicates in the useful trajectories."
# check if non-appearing points + appearing points = all the points in the video
all_points = set([(t, x, y) for t in range(T) for x in range(H) for y in range(W)])
left_points = all_points- set(trajs)
print("How many points not in the trajectories for resolution{}?".format(resolution), len(left_points))
for p in list(left_points):
useful_traj.append([p])
print("how many points in all trajectories for resolution{} after pending?".format(resolution), sum([len(i) for i in useful_traj]))
longest_length = max([len(i) for i in useful_traj])
sequence_length = (window_sizes[resolution]*2+1)**2 + longest_length - 1
seqs = []
masks = []
# create a dictionary to facilitate checking the trajectories to which each point belongs.
point_to_traj = {}
for traj in useful_traj:
for p in traj:
point_to_traj[p] = traj
for t in range(T):
for x in range(H):
for y in range(W):
neighbours = neighbors_index((t,x,y), window_sizes[resolution], H, W)
sequence = [(t,x,y)]+neighbours + [(0,0,0) for i in range((window_sizes[resolution]*2+1)**2-1-len(neighbours))]
sequence_mask = torch.zeros(sequence_length, dtype=torch.bool)
sequence_mask[:len(neighbours)+1] = True
traj = point_to_traj[(t,x,y)].copy()
traj.remove((t,x,y))
sequence = sequence + traj + [(0,0,0) for k in range(longest_length-1-len(traj))]
sequence_mask[(window_sizes[resolution]*2+1)**2: (window_sizes[resolution]*2+1)**2 + len(traj)] = True
seqs.append(sequence)
masks.append(sequence_mask)
seqs = torch.tensor(seqs)
masks = torch.stack(masks)
res["traj{}".format(resolution)] = seqs
res["mask{}".format(resolution)] = masks
return res
|