File size: 11,353 Bytes
2f3aac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import imageio
import numpy as np
from typing import Union
import decord
decord.bridge.set_bridge('torch')
import torch
import torchvision
import PIL
from typing import List
from tqdm import tqdm
from einops import rearrange
import torchvision.transforms.functional as F
import random

def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)

def save_videos_grid_pil(videos: List[PIL.Image.Image], path: str, rescale=False, n_rows=4, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)

def read_video(video_path, video_length, width=512, height=512, frame_rate=None):
    vr = decord.VideoReader(video_path, width=width, height=height)
    if frame_rate is None:
        frame_rate = max(1, len(vr) // video_length)
    sample_index = list(range(0, len(vr), frame_rate))[:video_length]
    video = vr.get_batch(sample_index)
    video = rearrange(video, "f h w c -> f c h w")
    video = (video / 127.5 - 1.0)
    return video


# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
    return ddim_latents


"""optical flow and trajectories sampling"""
def preprocess(img1_batch, img2_batch, transforms):
    img1_batch = F.resize(img1_batch, size=[512, 512], antialias=False)
    img2_batch = F.resize(img2_batch, size=[512, 512], antialias=False)
    return transforms(img1_batch, img2_batch)

def keys_with_same_value(dictionary):
    result = {}
    for key, value in dictionary.items():
        if value not in result:
            result[value] = [key]
        else:
            result[value].append(key)

    conflict_points = {}
    for k in result.keys():
        if len(result[k]) > 1:
            conflict_points[k] = result[k]
    return conflict_points

def find_duplicates(input_list):
    seen = set()
    duplicates = set()

    for item in input_list:
        if item in seen:
            duplicates.add(item)
        else:
            seen.add(item)

    return list(duplicates)

def neighbors_index(point, window_size, H, W):
    """return the spatial neighbor indices"""
    t, x, y = point
    neighbors = []
    for i in range(-window_size, window_size + 1):
        for j in range(-window_size, window_size + 1):
            if i == 0 and j == 0:
                continue
            if x + i < 0 or x + i >= H or y + j < 0 or y + j >= W:
                continue
            neighbors.append((t, x + i, y + j))
    return neighbors


@torch.no_grad()
def sample_trajectories(frames, device):
    from torchvision.models.optical_flow import Raft_Large_Weights
    from torchvision.models.optical_flow import raft_large

    weights = Raft_Large_Weights.DEFAULT
    transforms = weights.transforms()

    # frames, _, _ = torchvision.io.read_video(str(video_path), output_format="TCHW")

    clips = list(range(len(frames)))

    model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
    model = model.eval()

    finished_trajectories = []

    current_frames, next_frames = preprocess(frames[clips[:-1]], frames[clips[1:]], transforms)
    list_of_flows = model(current_frames.to(device), next_frames.to(device))
    predicted_flows = list_of_flows[-1]

    predicted_flows = predicted_flows/512

    resolutions = [64, 32, 16, 8]
    res = {}
    window_sizes = {64: 2,
                    32: 1,
                    16: 1,
                    8: 1}

    for resolution in resolutions:
        print("="*30)
        trajectories = {}
        predicted_flow_resolu = torch.round(resolution*torch.nn.functional.interpolate(predicted_flows, scale_factor=(resolution/512, resolution/512)))

        T = predicted_flow_resolu.shape[0]+1
        H = predicted_flow_resolu.shape[2]
        W = predicted_flow_resolu.shape[3]

        is_activated = torch.zeros([T, H, W], dtype=torch.bool)

        for t in range(T-1):
            flow = predicted_flow_resolu[t]
            for h in range(H):
                for w in range(W):

                    if not is_activated[t, h, w]:
                        is_activated[t, h, w] = True
                        # this point has not been traversed, start new trajectory
                        x = h + int(flow[1, h, w])
                        y = w + int(flow[0, h, w])
                        if x >= 0 and x < H and y >= 0 and y < W:
                            # trajectories.append([(t, h, w), (t+1, x, y)])
                            trajectories[(t, h, w)]= (t+1, x, y)

        conflict_points = keys_with_same_value(trajectories)
        for k in conflict_points:
            index_to_pop = random.randint(0, len(conflict_points[k]) - 1)
            conflict_points[k].pop(index_to_pop)
            for point in conflict_points[k]:
                if point[0] != T-1:
                    trajectories[point]= (-1, -1, -1) # stupid padding with (-1, -1, -1)

        active_traj = []
        all_traj = []
        for t in range(T):
            pixel_set = {(t, x//H, x%H):0 for x in range(H*W)}
            new_active_traj = []
            for traj in active_traj:
                if traj[-1] in trajectories:
                    v = trajectories[traj[-1]]
                    new_active_traj.append(traj + [v])
                    pixel_set[v] = 1
                else:
                    all_traj.append(traj)
            active_traj = new_active_traj
            active_traj+=[[pixel] for pixel in pixel_set if pixel_set[pixel] == 0]
        all_traj += active_traj

        useful_traj = [i for i in all_traj if len(i)>1]
        for idx in range(len(useful_traj)):
            if useful_traj[idx][-1] == (-1, -1, -1):
                useful_traj[idx] = useful_traj[idx][:-1]
        print("how many points in all trajectories for resolution{}?".format(resolution), sum([len(i) for i in useful_traj]))
        print("how many points in the video for resolution{}?".format(resolution), T*H*W)

        # validate if there are no duplicates in the trajectories
        trajs = []
        for traj in useful_traj:
            trajs = trajs + traj
        assert len(find_duplicates(trajs)) == 0, "There should not be duplicates in the useful trajectories."

        # check if non-appearing points + appearing points = all the points in the video
        all_points = set([(t, x, y) for t in range(T) for x in range(H) for y in range(W)])
        left_points = all_points- set(trajs)
        print("How many points not in the trajectories for resolution{}?".format(resolution), len(left_points))
        for p in list(left_points):
            useful_traj.append([p])
        print("how many points in all trajectories for resolution{} after pending?".format(resolution), sum([len(i) for i in useful_traj]))


        longest_length = max([len(i) for i in useful_traj])
        sequence_length = (window_sizes[resolution]*2+1)**2 + longest_length - 1

        seqs = []
        masks = []

        # create a dictionary to facilitate checking the trajectories to which each point belongs.
        point_to_traj = {}
        for traj in useful_traj:
            for p in traj:
                point_to_traj[p] = traj

        for t in range(T):
            for x in range(H):
                for y in range(W):
                    neighbours = neighbors_index((t,x,y), window_sizes[resolution], H, W)
                    sequence = [(t,x,y)]+neighbours + [(0,0,0) for i in range((window_sizes[resolution]*2+1)**2-1-len(neighbours))]
                    sequence_mask = torch.zeros(sequence_length, dtype=torch.bool)
                    sequence_mask[:len(neighbours)+1] = True

                    traj = point_to_traj[(t,x,y)].copy()
                    traj.remove((t,x,y))
                    sequence = sequence + traj + [(0,0,0) for k in range(longest_length-1-len(traj))]
                    sequence_mask[(window_sizes[resolution]*2+1)**2: (window_sizes[resolution]*2+1)**2 + len(traj)] = True

                    seqs.append(sequence)
                    masks.append(sequence_mask)

        seqs = torch.tensor(seqs)
        masks = torch.stack(masks)
        res["traj{}".format(resolution)] = seqs
        res["mask{}".format(resolution)] = masks
    return res