FLATTEN-unofficial / models /pipeline_flatten.py
sky24h's picture
init commit
2f3aac0
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from dataclasses import dataclass
import numpy as np
import PIL.Image
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL
from diffusers import ModelMixin
from diffusers.schedulers import DDIMScheduler, DDIMInverseScheduler
from diffusers.utils import (
PIL_INTERPOLATION,
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
BaseOutput
)
from diffusers.pipeline_utils import DiffusionPipeline
from einops import rearrange
from .unet import UNet3DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class FlattenPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class FlattenPipeline(DiffusionPipeline):
r"""
pipeline for FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded video latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
inverse_scheduler ([`SchedulerMixin`]):
DDIM inversion scheduler .
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
scheduler: DDIMScheduler,
inverse_scheduler: DDIMInverseScheduler
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
inverse_scheduler=inverse_scheduler
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae, and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
# the safety checker can offload the vae again
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def decode_latents(self, latents, return_tensor=False):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = self.vae.decode(latents).sample
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
if return_tensor:
return video
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
# image,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
raise TypeError(
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
)
if image_is_pil:
image_batch_size = 1
elif image_is_tensor:
image_batch_size = image.shape[0]
elif image_is_pil_list:
image_batch_size = len(image)
elif image_is_tensor_list:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
def prepare_image(
self, image, width, height, batch_size, num_videos_per_prompt, device, dtype, do_classifier_free_guidance
):
if not isinstance(image, torch.Tensor):
if isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
images = []
for image_ in image:
image_ = image_.convert("RGB")
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
image_ = np.array(image_)
image_ = image_[None, :]
images.append(image_)
image = images
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_videos_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
return image
def prepare_video_latents(self, frames, batch_size, dtype, device, generator=None):
if not isinstance(frames, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
frames = frames[0].to(device=device, dtype=dtype)
frames = rearrange(frames, "c f h w -> f c h w" )
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
latents = [
self.vae.encode(frames[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
latents = torch.cat(latents, dim=0)
else:
latents = self.vae.encode(frames).latent_dist.sample(generator)
latents = self.vae.config.scaling_factor * latents
latents = rearrange(latents, "f c h w ->c f h w" )
return latents[None]
def _default_height_width(self, height, width, image):
# NOTE: It is possible that a list of images have different
# dimensions for each image, so just checking the first image
# is not _exactly_ correct, but it is simple.
while isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[3]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[2]
width = (width // 8) * 8 # round down to nearest multiple of 8
return height, width
def get_alpha_prev(self, timestep):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
return alpha_prod_t_prev
def get_slide_window_indices(self, video_length, window_size):
assert window_size >=3
key_frame_indices = np.arange(0, video_length, window_size-1).tolist()
# Append last index
if key_frame_indices[-1] != (video_length-1):
key_frame_indices.append(video_length-1)
slices = np.split(np.arange(video_length), key_frame_indices)
inter_frame_list = []
for s in slices:
if len(s) < 2:
continue
inter_frame_list.append(s[1:].tolist())
return key_frame_indices, inter_frame_list
def get_inverse_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
# safety for t_start overflow to prevent empty timsteps slice
if t_start == 0:
return self.inverse_scheduler.timesteps, num_inference_steps
timesteps = self.inverse_scheduler.timesteps[:-t_start]
return timesteps, num_inference_steps - t_start
def clean_features(self):
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = None
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = None
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = None
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = None
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
video_length: Optional[int] = 1,
frames: Union[List[torch.FloatTensor], List[PIL.Image.Image], List[List[torch.FloatTensor]], List[List[PIL.Image.Image]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_videos_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
frames (`List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
The original video frames to be edited.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
"""
height, width = self._default_height_width(height, width, frames)
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# encode empty prompt
prompt_embeds = self._encode_prompt(
"",
device,
num_videos_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
images = []
for i_img in frames:
i_img = self.prepare_image(
image=i_img,
width=width,
height=height,
batch_size=batch_size * num_videos_per_prompt,
num_videos_per_prompt=num_videos_per_prompt,
device=device,
dtype=self.unet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
images.append(i_img)
frames = torch.stack(images, dim=2) # b x c x f x h x w
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
latents = self.prepare_video_latents(frames, batch_size, self.unet.dtype, device, generator=generator)
saved_features0 = []
saved_features1 = []
saved_features2 = []
saved_q4 = []
saved_k4 = []
saved_q5 = []
saved_k5 = []
saved_q6 = []
saved_k6 = []
saved_q7 = []
saved_k7 = []
saved_q8 = []
saved_k8 = []
saved_q9 = []
saved_k9 = []
# ddim inverse
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_inverse_steps = 100
self.inverse_scheduler.set_timesteps(num_inverse_steps, device=device)
inverse_timesteps, num_inverse_steps = self.get_inverse_timesteps(num_inverse_steps, 1, device)
num_warmup_steps = len(inverse_timesteps) - num_inverse_steps * self.inverse_scheduler.order
with self.progress_bar(total=num_inverse_steps-1) as progress_bar:
for i, t in enumerate(inverse_timesteps[1:]):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
**kwargs,
).sample
if t in timesteps:
saved_features0.append(self.unet.up_blocks[1].resnets[0].out_layers_features.cpu())
saved_features1.append(self.unet.up_blocks[1].resnets[1].out_layers_features.cpu())
saved_features2.append(self.unet.up_blocks[2].resnets[0].out_layers_features.cpu())
saved_q4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.q.cpu())
saved_k4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.k.cpu())
saved_q5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.q.cpu())
saved_k5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.k.cpu())
saved_q6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.q.cpu())
saved_k6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.k.cpu())
saved_q7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.q.cpu())
saved_k7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.k.cpu())
saved_q8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.q.cpu())
saved_k8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.k.cpu())
saved_q9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.q.cpu())
saved_k9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.k.cpu())
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + 1 * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample
if i == len(inverse_timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0):
progress_bar.update()
saved_features0.reverse()
saved_features1.reverse()
saved_features2.reverse()
saved_q4.reverse()
saved_k4.reverse()
saved_q5.reverse()
saved_k5.reverse()
saved_q6.reverse()
saved_k6.reverse()
saved_q7.reverse()
saved_k7.reverse()
saved_q8.reverse()
saved_k8.reverse()
saved_q9.reverse()
saved_k9.reverse()
# video sampling
prompt_embeds = self._encode_prompt(
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=negative_prompt_embeds,
)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
torch.cuda.empty_cache()
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# inject features
if i < kwargs["inject_step"]:
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = saved_features0[i].to(device)
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = saved_features1[i].to(device)
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = saved_features2[i].to(device)
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = saved_q4[i].to(device)
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = saved_k4[i].to(device)
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = saved_q5[i].to(device)
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = saved_k5[i].to(device)
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = saved_q6[i].to(device)
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = saved_k6[i].to(device)
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = saved_q7[i].to(device)
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = saved_k7[i].to(device)
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = saved_q8[i].to(device)
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = saved_k8[i].to(device)
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = saved_q9[i].to(device)
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = saved_k9[i].to(device)
else:
self.clean_features()
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
**kwargs,
).sample
self.clean_features()
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
step_dict = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
latents = step_dict.prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
torch.cuda.empty_cache()
# Post-processing
video = self.decode_latents(latents)
# Convert to tensor
if output_type == "tensor":
video = torch.from_numpy(video)
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return video
return FlattenPipelineOutput(videos=video)