Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from dataclasses import dataclass | |
import numpy as np | |
import PIL.Image | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers.models import AutoencoderKL | |
from diffusers import ModelMixin | |
from diffusers.schedulers import DDIMScheduler, DDIMInverseScheduler | |
from diffusers.utils import ( | |
PIL_INTERPOLATION, | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
randn_tensor, | |
BaseOutput | |
) | |
from diffusers.pipeline_utils import DiffusionPipeline | |
from einops import rearrange | |
from .unet import UNet3DConditionModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class FlattenPipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
class FlattenPipeline(DiffusionPipeline): | |
r""" | |
pipeline for FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded video latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
inverse_scheduler ([`SchedulerMixin`]): | |
DDIM inversion scheduler . | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet3DConditionModel, | |
scheduler: DDIMScheduler, | |
inverse_scheduler: DDIMInverseScheduler | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
inverse_scheduler=inverse_scheduler | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae, and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
cpu_offload(cpu_offloaded_model, device) | |
if self.safety_checker is not None: | |
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
hook = None | |
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
if self.safety_checker is not None: | |
# the safety checker can offload the vae again | |
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_videos_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
""" | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return prompt_embeds | |
def decode_latents(self, latents, return_tensor=False): | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
video = self.vae.decode(latents).sample | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
if return_tensor: | |
return video | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
# image, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def check_image(self, image, prompt, prompt_embeds): | |
image_is_pil = isinstance(image, PIL.Image.Image) | |
image_is_tensor = isinstance(image, torch.Tensor) | |
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list: | |
raise TypeError( | |
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors" | |
) | |
if image_is_pil: | |
image_batch_size = 1 | |
elif image_is_tensor: | |
image_batch_size = image.shape[0] | |
elif image_is_pil_list: | |
image_batch_size = len(image) | |
elif image_is_tensor_list: | |
image_batch_size = len(image) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
def prepare_image( | |
self, image, width, height, batch_size, num_videos_per_prompt, device, dtype, do_classifier_free_guidance | |
): | |
if not isinstance(image, torch.Tensor): | |
if isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
images = [] | |
for image_ in image: | |
image_ = image_.convert("RGB") | |
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
image_ = np.array(image_) | |
image_ = image_[None, :] | |
images.append(image_) | |
image = images | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_videos_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
return image | |
def prepare_video_latents(self, frames, batch_size, dtype, device, generator=None): | |
if not isinstance(frames, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
frames = frames[0].to(device=device, dtype=dtype) | |
frames = rearrange(frames, "c f h w -> f c h w" ) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
latents = [ | |
self.vae.encode(frames[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0) | |
else: | |
latents = self.vae.encode(frames).latent_dist.sample(generator) | |
latents = self.vae.config.scaling_factor * latents | |
latents = rearrange(latents, "f c h w ->c f h w" ) | |
return latents[None] | |
def _default_height_width(self, height, width, image): | |
# NOTE: It is possible that a list of images have different | |
# dimensions for each image, so just checking the first image | |
# is not _exactly_ correct, but it is simple. | |
while isinstance(image, list): | |
image = image[0] | |
if height is None: | |
if isinstance(image, PIL.Image.Image): | |
height = image.height | |
elif isinstance(image, torch.Tensor): | |
height = image.shape[3] | |
height = (height // 8) * 8 # round down to nearest multiple of 8 | |
if width is None: | |
if isinstance(image, PIL.Image.Image): | |
width = image.width | |
elif isinstance(image, torch.Tensor): | |
width = image.shape[2] | |
width = (width // 8) * 8 # round down to nearest multiple of 8 | |
return height, width | |
def get_alpha_prev(self, timestep): | |
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps | |
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod | |
return alpha_prod_t_prev | |
def get_slide_window_indices(self, video_length, window_size): | |
assert window_size >=3 | |
key_frame_indices = np.arange(0, video_length, window_size-1).tolist() | |
# Append last index | |
if key_frame_indices[-1] != (video_length-1): | |
key_frame_indices.append(video_length-1) | |
slices = np.split(np.arange(video_length), key_frame_indices) | |
inter_frame_list = [] | |
for s in slices: | |
if len(s) < 2: | |
continue | |
inter_frame_list.append(s[1:].tolist()) | |
return key_frame_indices, inter_frame_list | |
def get_inverse_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
# safety for t_start overflow to prevent empty timsteps slice | |
if t_start == 0: | |
return self.inverse_scheduler.timesteps, num_inference_steps | |
timesteps = self.inverse_scheduler.timesteps[:-t_start] | |
return timesteps, num_inference_steps - t_start | |
def clean_features(self): | |
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = None | |
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = None | |
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = None | |
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = None | |
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = None | |
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = None | |
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = None | |
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = None | |
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = None | |
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = None | |
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = None | |
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = None | |
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = None | |
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = None | |
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = None | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
video_length: Optional[int] = 1, | |
frames: Union[List[torch.FloatTensor], List[PIL.Image.Image], List[List[torch.FloatTensor]], List[List[PIL.Image.Image]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
frames (`List[torch.FloatTensor]`, `List[PIL.Image.Image]`, | |
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`): | |
The original video frames to be edited. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
""" | |
height, width = self._default_height_width(height, width, frames) | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# encode empty prompt | |
prompt_embeds = self._encode_prompt( | |
"", | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
images = [] | |
for i_img in frames: | |
i_img = self.prepare_image( | |
image=i_img, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_videos_per_prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
device=device, | |
dtype=self.unet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
images.append(i_img) | |
frames = torch.stack(images, dim=2) # b x c x f x h x w | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
latents = self.prepare_video_latents(frames, batch_size, self.unet.dtype, device, generator=generator) | |
saved_features0 = [] | |
saved_features1 = [] | |
saved_features2 = [] | |
saved_q4 = [] | |
saved_k4 = [] | |
saved_q5 = [] | |
saved_k5 = [] | |
saved_q6 = [] | |
saved_k6 = [] | |
saved_q7 = [] | |
saved_k7 = [] | |
saved_q8 = [] | |
saved_k8 = [] | |
saved_q9 = [] | |
saved_k9 = [] | |
# ddim inverse | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_inverse_steps = 100 | |
self.inverse_scheduler.set_timesteps(num_inverse_steps, device=device) | |
inverse_timesteps, num_inverse_steps = self.get_inverse_timesteps(num_inverse_steps, 1, device) | |
num_warmup_steps = len(inverse_timesteps) - num_inverse_steps * self.inverse_scheduler.order | |
with self.progress_bar(total=num_inverse_steps-1) as progress_bar: | |
for i, t in enumerate(inverse_timesteps[1:]): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
**kwargs, | |
).sample | |
if t in timesteps: | |
saved_features0.append(self.unet.up_blocks[1].resnets[0].out_layers_features.cpu()) | |
saved_features1.append(self.unet.up_blocks[1].resnets[1].out_layers_features.cpu()) | |
saved_features2.append(self.unet.up_blocks[2].resnets[0].out_layers_features.cpu()) | |
saved_q4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.q.cpu()) | |
saved_k4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.k.cpu()) | |
saved_q5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.q.cpu()) | |
saved_k5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.k.cpu()) | |
saved_q6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.q.cpu()) | |
saved_k6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.k.cpu()) | |
saved_q7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.q.cpu()) | |
saved_k7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.k.cpu()) | |
saved_q8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.q.cpu()) | |
saved_k8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.k.cpu()) | |
saved_q9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.q.cpu()) | |
saved_k9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.k.cpu()) | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + 1 * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample | |
if i == len(inverse_timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0): | |
progress_bar.update() | |
saved_features0.reverse() | |
saved_features1.reverse() | |
saved_features2.reverse() | |
saved_q4.reverse() | |
saved_k4.reverse() | |
saved_q5.reverse() | |
saved_k5.reverse() | |
saved_q6.reverse() | |
saved_k6.reverse() | |
saved_q7.reverse() | |
saved_k7.reverse() | |
saved_q8.reverse() | |
saved_k8.reverse() | |
saved_q9.reverse() | |
saved_k9.reverse() | |
# video sampling | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=None, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
torch.cuda.empty_cache() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# inject features | |
if i < kwargs["inject_step"]: | |
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = saved_features0[i].to(device) | |
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = saved_features1[i].to(device) | |
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = saved_features2[i].to(device) | |
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = saved_q4[i].to(device) | |
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = saved_k4[i].to(device) | |
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = saved_q5[i].to(device) | |
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = saved_k5[i].to(device) | |
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = saved_q6[i].to(device) | |
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = saved_k6[i].to(device) | |
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = saved_q7[i].to(device) | |
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = saved_k7[i].to(device) | |
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = saved_q8[i].to(device) | |
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = saved_k8[i].to(device) | |
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = saved_q9[i].to(device) | |
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = saved_k9[i].to(device) | |
else: | |
self.clean_features() | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
**kwargs, | |
).sample | |
self.clean_features() | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
step_dict = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs) | |
latents = step_dict.prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# If we do sequential model offloading, let's offload unet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
torch.cuda.empty_cache() | |
# Post-processing | |
video = self.decode_latents(latents) | |
# Convert to tensor | |
if output_type == "tensor": | |
video = torch.from_numpy(video) | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return video | |
return FlattenPipelineOutput(videos=video) | |