sky24h's picture
init commit
910b9ab
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Optional, Union, Tuple, List, Callable, Dict
from IPython.display import display
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
from torch import nn, einsum
from einops import rearrange, repeat
from inspect import isfunction
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
h, w, c = image.shape
offset = int(h * .2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
img[:h] = image
textsize = cv2.getTextSize(text, font, 1, 2)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
return img
def view_images(images, num_rows=1, offset_ratio=0.02, name='image', timestamp=0, layernum=None):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
display(pil_img)
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
if low_resource:
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
else:
latents_input = torch.cat([latents] * 2)
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
# classifier-free guidance during inference
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
# noise_pred = guidance_scale * noise_prediction_text
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
latents = controller.step_callback(latents)
return latents
def latent2image(vae, latents):
latents = 1 / 0.18215 * latents
image = vae.decode(latents)['sample']
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
@torch.no_grad()
def text2image_ldm(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
):
register_attention_control(model, controller)
height = width = 256
batch_size = len(prompt)
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
context = torch.cat([uncond_embeddings, text_embeddings])
model.scheduler.set_timesteps(num_inference_steps)
for t in tqdm(model.scheduler.timesteps):
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
image = latent2image(model.vqvae, latents)
return image, latent
@torch.no_grad()
def text2image_ldm_stable(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
low_resource: bool = False,
):
register_attention_control(model, controller)
height = width = 512
batch_size = len(prompt)
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
context = [uncond_embeddings, text_embeddings]
if not low_resource:
context = torch.cat(context)
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for t in tqdm(model.scheduler.timesteps):
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
image = latent2image(model.vae, latents)
return image, latent
def register_attention_control(model, controller, center_row_rm, center_col_rm, target_height, target_width, width, height, top=None, left=None, bottom=None, right=None, inject_bg=False, segmentation_map=None, pseudo_cross=False):
def ca_forward(self, place_in_unet):
def forward(x, context=None, mask=None, encode=False, controller_for_inject=None, inject=False, layernum=None, main_height=None, main_width=None):
torch.cuda.empty_cache()
is_cross = context is not None
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# ref's location in ref image
top_rr = int((0.5*(target_height - height))/target_height * main_height)
bottom_rr = int((0.5*(target_height + height))/target_height * main_height)
left_rr = int((0.5*(target_width - width))/target_width * main_width)
right_rr = int((0.5*(target_width + width))/target_width * main_width)
new_height = bottom_rr - top_rr
new_width = right_rr - left_rr
step_height2, remainder = divmod(new_height, 2)
step_height1 = step_height2 + remainder
step_width2, remainder = divmod(new_width, 2)
step_width1 = step_width2 + remainder
center_row = int(center_row_rm * main_height)
center_col = int(center_col_rm * main_width)
if pseudo_cross:
ref_init = rearrange(x[2], '(h w) c ->1 c h w', h=main_height).contiguous()
context = ref_init[:, :, top_rr:bottom_rr, left_rr:right_rr]
context = rearrange(context, '1 c h w ->1 (h w) c').contiguous()
context = repeat(context, '1 ... -> b ...', b=2)
if (sim.shape[1])**0.5 == 32:
seg_map = segmentation_map[::2, ::2].clone()
elif (sim.shape[1])**0.5 == 16:
seg_map = segmentation_map[::4, ::4].clone()
elif (sim.shape[1])**0.5 == 8:
seg_map = segmentation_map[::8, ::8].clone()
else:
seg_map = segmentation_map.clone()
# record reference location
ref_loc_masked = []
for i in range(bottom_rr - top_rr):
for j in range(right_rr - left_rr):
if seg_map[top_rr:bottom_rr, left_rr:right_rr][i, j] == 1:
ref_loc_masked.append(int(i * (right_rr - left_rr) + j))
ref_loc_masked = torch.tensor((ref_loc_masked), device=x.device)
if len(ref_loc_masked) == 0:
masked_context = context
else:
masked_context = context[:, ref_loc_masked, :]
k = self.to_k(masked_context)
v = self.to_v(masked_context)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k, v))
sim = einsum('b i d, b j d -> b i j', q[int(q.shape[0]/2):], k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
if encode == False:
sim = controller(sim, is_cross, place_in_unet)
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
out = torch.cat([out]*2, dim=0)
del sim, k, v, masked_context, q, ref_loc_masked, context, ref_init, seg_map, mask
return self.to_out(out)
if encode == False:
sim = controller(sim, is_cross, place_in_unet)
if inject or inject_bg and is_cross == False:
if (sim.shape[1])**0.5 == 32:
seg_map = segmentation_map[::2, ::2]
elif (sim.shape[1])**0.5 == 16:
seg_map = segmentation_map[::4, ::4]
elif (sim.shape[1])**0.5 == 8:
seg_map = segmentation_map[::8, ::8]
else:
seg_map = segmentation_map
ref_loc = []
ref_loc_masked = []
for i in range(top_rr, bottom_rr):
for j in range(left_rr, right_rr):
ref_loc.append(int(i * (sim.shape[1])**0.5 + j))
if seg_map[i, j] == 1:
ref_loc_masked.append(int(i * (sim.shape[1])**0.5 + j))
ref_loc_masked = torch.tensor((ref_loc_masked), device=x.device)
ref_col_maksed1 = ref_loc_masked.repeat(len(ref_loc_masked)).unsqueeze(1)
ref_col_maksed2 = ref_loc_masked.repeat_interleave(len(ref_loc_masked)).unsqueeze(1)
# original location
orig_loc_masked = []
orig_loc = []
orig_mask = torch.zeros_like(sim[h:])
mask_for_realSA = torch.zeros_like(sim[h:])
for i_seg, i in enumerate(range(center_row - step_height1, center_row + step_height2)):
for j_seg, j in enumerate(range(center_col - step_width1, center_col + step_width2)):
orig_loc.append(int(i * (sim.shape[1])**0.5 + j))
# within segmentation map
if seg_map[top_rr:bottom_rr, left_rr:right_rr][i_seg, j_seg] == 1:
orig_loc_masked.append(int(i * (sim.shape[1])**0.5 + j))
orig_loc_masked = torch.tensor((orig_loc_masked), device=x.device)
orig_col_masked1 = orig_loc_masked.repeat(len(orig_loc_masked)).unsqueeze(1)
orig_col_masked2 = orig_loc_masked.repeat_interleave(len(orig_loc_masked)).unsqueeze(1)
orig_loc = torch.tensor((orig_loc), device=x.device)
mask_for_realSA[:, orig_loc, :] = 1
mask_for_realSA[:, :, orig_loc] = 1
if place_in_unet == 'down':
if inject_bg:
# inject background of the squared region
sim[h:] = controller_for_inject[0].attention_store['down_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
if inject and len(ref_col_maksed1) != 0:
# inject the pesudo cross attention
if len(orig_loc_masked) != 0:
sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['down_self'][layernum] # row injection
sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['down_self'][layernum].permute(0,2,1) # column injection
# inject the foreground in the squared region but masked by the segmentation map
sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['down_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]
elif place_in_unet == 'up':
if inject_bg:
# inject background of the squared region
sim[h:] = controller_for_inject[0].attention_store['up_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
if inject and len(ref_col_maksed1) != 0:
# inject the pesudo cross attention
if len(orig_loc_masked) != 0:
sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['up_self'][layernum] # row injection
sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['up_self'][layernum].permute(0,2,1) # column injection
# inject the foreground in the squared region but masked by the segmentation map
sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['up_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]
elif place_in_unet == 'mid':
if inject_bg:
# inject background of the squared region
sim[h:] = controller_for_inject[0].attention_store['mid_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
if inject and len(ref_col_maksed1) != 0:
# inject the pesudo cross attention
if len(orig_loc_masked) != 0:
sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['mid_self'][layernum] # row injection
sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['mid_self'][layernum].permute(0,2,1) # column injection
# inject the foreground in the squared region but masked by the segmentation map
sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['mid_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]
del orig_mask, mask_for_realSA, orig_loc_masked, orig_col_masked1, orig_col_masked2, ref_col_maksed1, ref_col_maksed2
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
del sim, v, q, k, context
return self.to_out(out)
return forward
def register_recr(net_, count, place_in_unet):
if 'CrossAttention' in net_.__class__.__name__:
if net_.to_k.in_features != 1024:
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
else:
return count
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
# sub_nets = model.unet.named_children()
sub_nets = model.model.diffusion_model.named_children()
for net in sub_nets:
if "input" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "output" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "middle" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[: start, prompt_ind, word_inds] = 0
alpha[start: end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
tokenizer, max_num_words=77):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0., 1.)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words
return alpha_time_words