sachin
add-chnage
37b0941
raw
history blame
24.4 kB
import argparse
import io
import os
import tempfile
from time import time
from typing import List
import uvicorn
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form, APIRouter
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
from PIL import Image
from pydantic import BaseModel, field_validator
from pydantic_settings import BaseSettings
from slowapi import Limiter
from slowapi.util import get_remote_address
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModel, Gemma3ForConditionalGeneration
from IndicTransToolkit import IndicProcessor
import json
import asyncio
from contextlib import asynccontextmanager
import soundfile as sf
import numpy as np
import requests
import logging
from starlette.responses import StreamingResponse
from logging_config import logger # Assumed external logging config
from tts_config import SPEED, ResponseFormat, config as tts_config # Assumed external TTS config
import torchaudio
from tenacity import retry, stop_after_attempt, wait_exponential
from torch.cuda.amp import autocast
# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32 # Use float16 for speed
logger.info(f"Using device: {device} with dtype: {torch_dtype}")
# Check CUDA availability and version
cuda_available = torch.cuda.is_available()
cuda_version = torch.version.cuda if cuda_available else None
if cuda_available:
device_idx = torch.cuda.current_device()
capability = torch.cuda.get_device_capability(device_idx)
logger.info(f"CUDA version: {cuda_version}, Compute Capability: {capability[0]}.{capability[1]}")
else:
logger.info("CUDA is not available; falling back to CPU.")
# Settings
class Settings(BaseSettings):
llm_model_name: str = "google/gemma-3-4b-it"
max_tokens: int = 512
host: str = "0.0.0.0"
port: int = 7860
chat_rate_limit: str = "100/minute"
speech_rate_limit: str = "5/minute"
@field_validator("chat_rate_limit", "speech_rate_limit")
def validate_rate_limit(cls, v):
if not v.count("/") == 1 or not v.split("/")[0].isdigit():
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
return v
class Config:
env_file = ".env"
settings = Settings()
# Request queue for concurrency control (max 10 concurrent GPU tasks)
request_queue = asyncio.Queue(maxsize=10)
# Logging optimization
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
# LLM Manager with persistent loading and improved caching
class LLMManager:
def __init__(self, model_name: str, device: str = device):
self.model_name = model_name
self.device = torch.device(device)
self.torch_dtype = torch_dtype
self.model = None
self.processor = None
self.is_loaded = False
self.token_cache = {}
self.load() # Load persistently at initialization
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
def load(self):
if not self.is_loaded:
try:
if self.device.type == "cuda":
torch.set_float32_matmul_precision('high')
logger.info("Enabled TF32 matrix multiplication for improved GPU performance")
self.model = Gemma3ForConditionalGeneration.from_pretrained(
self.model_name,
device_map="auto",
torch_dtype=torch.float16, # Use float16 for speed
max_memory={0: "10GiB"}
).eval()
self.processor = AutoProcessor.from_pretrained(self.model_name, use_fast=True)
# Warm-up model
dummy_input = self.processor("test", return_tensors="pt").to(self.device)
with torch.no_grad():
self.model.generate(**dummy_input, max_new_tokens=10)
self.is_loaded = True
logger.info(f"LLM {self.model_name} loaded and warmed up on {self.device}")
except Exception as e:
logger.error(f"Failed to load LLM: {str(e)}")
self.is_loaded = False # Allow graceful degradation
def unload(self):
if self.is_loaded:
del self.model
del self.processor
if self.device.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.is_loaded = False
self.token_cache.clear()
logger.info(f"LLM {self.model_name} unloaded")
async def generate(self, prompt: str, max_tokens: int = settings.max_tokens, temperature: float = 0.7) -> str:
if not self.is_loaded:
logger.warning("LLM not loaded; attempting reload")
self.load()
if not self.is_loaded:
raise HTTPException(status_code=503, detail="LLM model unavailable")
# Improved cache key with parameters
cache_key = f"{prompt}:{max_tokens}:{temperature}"
if cache_key in self.token_cache:
logger.info("Using cached response")
return self.token_cache[cache_key]
messages_vlm = [
{"role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
try:
inputs_vlm = self.processor.apply_chat_template(
messages_vlm,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
with autocast(): # Mixed precision for speed
generation = self.model.generate(
**inputs_vlm,
max_new_tokens=max_tokens,
do_sample=True,
top_p=0.9,
temperature=temperature
)
generation = generation[0][inputs_vlm["input_ids"].shape[-1]:]
response = self.processor.decode(generation, skip_special_tokens=True)
self.token_cache[cache_key] = response
logger.info(f"Generated response: {response}")
return response
except Exception as e:
logger.error(f"Error in generation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
# TTS Manager with file-based synthesis
class TTSManager:
def __init__(self, device_type=device):
self.device_type = torch.device(device_type)
self.model = None
self.repo_id = "ai4bharat/IndicF5"
self.load() # Persistent loading
def load(self):
if not self.model:
logger.info(f"Loading TTS model {self.repo_id} on {self.device_type}...")
self.model = AutoModel.from_pretrained(self.repo_id, trust_remote_code=True).to(self.device_type)
logger.info("TTS model loaded")
def unload(self):
if self.model:
del self.model
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"TTS GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
logger.info("TTS model unloaded")
def synthesize(self, text, ref_audio_path, ref_text):
if not self.model:
raise ValueError("TTS model not loaded")
with autocast(): # Mixed precision
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text)
# Translation Manager with warm-up and error handling
class TranslateManager:
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True):
self.device_type = torch.device(device_type)
self.tokenizer, self.model = self.initialize_model(src_lang, tgt_lang, use_distilled)
if self.model:
self.warm_up()
def initialize_model(self, src_lang, tgt_lang, use_distilled=True):
try:
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if use_distilled else "ai4bharat/indictrans2-en-indic-1B"
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if use_distilled else "ai4bharat/indictrans2-indic-en-1B"
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
else:
raise ValueError("Invalid language combination")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
).to(self.device_type)
return tokenizer, model
except Exception as e:
logger.error(f"Failed to load translation model: {str(e)}")
return None, None # Graceful degradation
def warm_up(self):
dummy_input = self.tokenizer("test", return_tensors="pt").to(self.device_type)
with torch.no_grad(), autocast():
self.model.generate(**dummy_input, max_length=10)
logger.info("Translation model warmed up")
def unload(self):
if self.model:
del self.model
del self.tokenizer
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"Translation GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
self.tokenizer = None
logger.info("Translation model unloaded")
# Model Manager with preloading
class ModelManager:
def __init__(self, device_type=device, use_distilled=True):
self.models = {}
self.device_type = device_type
self.use_distilled = use_distilled
self.preload_models()
def preload_models(self):
translation_pairs = [
('eng_Latn', 'kan_Knda', 'eng_indic'),
('kan_Knda', 'eng_Latn', 'indic_eng'),
('kan_Knda', 'hin_Deva', 'indic_indic')
]
for src_lang, tgt_lang, key in translation_pairs:
logger.info(f"Preloading translation model for {src_lang} -> {tgt_lang}...")
self.models[key] = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
def get_model(self, src_lang, tgt_lang):
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
key = 'eng_indic'
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
key = 'indic_eng'
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
key = 'indic_indic'
else:
raise ValueError("Invalid language combination")
if key not in self.models or not self.models[key].model:
raise HTTPException(status_code=503, detail=f"Translation model for {key} unavailable")
return self.models[key]
# ASR Manager with GPU audio processing
class ASRModelManager:
def __init__(self, device_type=device):
self.device_type = torch.device(device_type)
self.model = None
self.model_language = {"kannada": "kn"}
self.load()
def load(self):
if not self.model:
logger.info(f"Loading ASR model on {self.device_type}...")
self.model = AutoModel.from_pretrained(
"ai4bharat/indic-conformer-600m-multilingual",
trust_remote_code=True
).to(self.device_type)
logger.info("ASR model loaded")
def unload(self):
if self.model:
del self.model
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"ASR GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
logger.info("ASR model unloaded")
# Global Managers
llm_manager = LLMManager(settings.llm_model_name)
model_manager = ModelManager()
asr_manager = ASRModelManager()
tts_manager = TTSManager()
ip = IndicProcessor(inference=True)
# TTS Constants
EXAMPLES = [
{
"audio_name": "KAN_F (Happy)",
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav",
"ref_text": "ನಮ್‌ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್‌ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್‌ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್‌ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ।",
},
]
# Pydantic Models
class ChatRequest(BaseModel):
prompt: str
src_lang: str = "kan_Knda"
tgt_lang: str = "kan_Knda"
@field_validator("prompt")
def prompt_must_be_valid(cls, v):
if len(v) > 1000:
raise ValueError("Prompt cannot exceed 1000 characters")
return v.strip()
class ChatResponse(BaseModel):
response: str
class KannadaSynthesizeRequest(BaseModel):
text: str
@field_validator("text")
def text_must_be_valid(cls, v):
if len(v) > 500:
raise ValueError("Text cannot exceed 500 characters")
return v.strip()
class TranscriptionResponse(BaseModel):
text: str
# TTS Functions
@retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10))
def load_audio_from_url(url: str):
response = requests.get(url)
if response.status_code == 200:
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
return sample_rate, audio_data
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL after retries")
async def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str) -> io.BytesIO:
async with request_queue:
ref_audio_url = None
for example in EXAMPLES:
if example["audio_name"] == ref_audio_name:
ref_audio_url = example["audio_url"]
if not ref_text:
ref_text = example["ref_text"]
break
if not ref_audio_url:
raise HTTPException(status_code=400, detail=f"Invalid reference audio name: {ref_audio_name}")
if not text.strip() or not ref_text.strip():
raise HTTPException(status_code=400, detail="Text or reference text cannot be empty")
logger.info(f"Synthesizing speech for text: {text[:50]}... with ref_audio: {ref_audio_name}")
sample_rate, audio_data = load_audio_from_url(ref_audio_url)
# Use temporary file since IndicF5 requires a path
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_ref_audio:
sf.write(temp_ref_audio.name, audio_data, sample_rate, format='WAV')
temp_ref_audio.flush()
audio = tts_manager.synthesize(text, temp_ref_audio.name, ref_text)
if audio.dtype == np.int16:
audio = audio.astype(np.float32) / 32768.0
output_buffer = io.BytesIO()
sf.write(output_buffer, audio, 24000, format='WAV')
output_buffer.seek(0)
logger.info("Speech synthesis completed")
return output_buffer
# FastAPI App
app = FastAPI(
title="Optimized Dhwani API",
description="AI Chat API with optimized performance and robustness",
version="1.0.0",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
@app.middleware("http")
async def add_request_timing(request: Request, call_next):
start_time = time()
response = await call_next(request)
end_time = time()
duration = end_time - start_time
logger.info(f"Request to {request.url.path} took {duration:.3f} seconds")
response.headers["X-Response-Time"] = f"{duration:.3f}"
return response
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Lifespan Event Handler
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.info("Starting server with preloaded models...")
yield
llm_manager.unload()
tts_manager.unload()
asr_manager.unload()
for model in model_manager.models.values():
model.unload()
logger.info("Server shutdown complete; all models unloaded")
# Endpoints
@app.post("/v1/speech_to_speech", response_class=StreamingResponse)
async def speech_to_speech(
request: Request,
file: UploadFile = File(...),
language: str = Query(..., enum=list(asr_manager.model_language.keys())),
):
async with request_queue:
if not tts_manager.model or not asr_manager.model:
raise HTTPException(status_code=503, detail="TTS or ASR model not loaded")
audio_data = await file.read()
if not audio_data:
raise HTTPException(status_code=400, detail="Uploaded audio file is empty")
if len(audio_data) > 10 * 1024 * 1024:
raise HTTPException(status_code=400, detail="Audio file exceeds 10MB limit")
logger.info(f"Processing speech-to-speech for file: {file.filename} in language: {language}")
try:
# GPU-accelerated transcription
wav, sr = torchaudio.load(io.BytesIO(audio_data), backend="cuda" if cuda_available else "cpu")
wav = torch.mean(wav, dim=0, keepdim=True).to(device)
target_sample_rate = 16000
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate).to(device)
wav = resampler(wav)
with autocast(), torch.no_grad():
transcription = asr_manager.model(wav, asr_manager.model_language[language], "rnnt")
logger.info(f"Transcribed text: {transcription[:50]}...")
chat_request = ChatRequest(
prompt=transcription,
src_lang="kan_Knda",
tgt_lang="kan_Knda"
)
translate_mgr = model_manager.get_model(chat_request.src_lang, "eng_Latn")
if translate_mgr.model:
translated_prompt = await perform_internal_translation(
[chat_request.prompt], chat_request.src_lang, "eng_Latn"
)
prompt_to_process = translated_prompt[0]
else:
prompt_to_process = chat_request.prompt
response = await llm_manager.generate(prompt_to_process)
if chat_request.tgt_lang != "eng_Latn":
translate_mgr = model_manager.get_model("eng_Latn", chat_request.tgt_lang)
if translate_mgr.model:
translated_response = await perform_internal_translation(
[response], "eng_Latn", chat_request.tgt_lang
)
final_response = translated_response[0]
else:
final_response = response
else:
final_response = response
logger.info(f"Processed text: {final_response[:50]}...")
audio_buffer = await synthesize_speech(tts_manager, final_response, "KAN_F (Happy)", EXAMPLES[0]["ref_text"])
logger.info("Speech-to-speech processing completed")
return StreamingResponse(
audio_buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=speech_to_speech_output.wav"}
)
except Exception as e:
logger.error(f"Error in speech-to-speech pipeline: {str(e)}")
raise HTTPException(status_code=500, detail=f"Speech-to-speech failed: {str(e)}")
@app.post("/v1/chat", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat(request: Request, chat_request: ChatRequest):
async with request_queue:
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
try:
if chat_request.src_lang != "eng_Latn":
translate_mgr = model_manager.get_model(chat_request.src_lang, "eng_Latn")
if translate_mgr.model:
translated_prompt = await perform_internal_translation(
[chat_request.prompt], chat_request.src_lang, "eng_Latn"
)
prompt_to_process = translated_prompt[0]
logger.info(f"Translated prompt to English: {prompt_to_process}")
else:
prompt_to_process = chat_request.prompt
else:
prompt_to_process = chat_request.prompt
response = await llm_manager.generate(prompt_to_process)
logger.info(f"Generated English response: {response}")
if chat_request.tgt_lang != "eng_Latn":
translate_mgr = model_manager.get_model("eng_Latn", chat_request.tgt_lang)
if translate_mgr.model:
translated_response = await perform_internal_translation(
[response], "eng_Latn", chat_request.tgt_lang
)
final_response = translated_response[0]
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
else:
final_response = response
else:
final_response = response
return ChatResponse(response=final_response)
except Exception as e:
logger.error(f"Error in chat: {str(e)}")
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
translate_mgr = model_manager.get_model(src_lang, tgt_lang)
if not translate_mgr.model:
raise HTTPException(status_code=503, detail="Translation model unavailable")
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=tgt_lang)
inputs = translate_mgr.tokenizer(batch, truncation=True, padding="longest", return_tensors="pt").to(device)
with torch.no_grad(), autocast():
tokens = translate_mgr.model.generate(**inputs, max_length=256, num_beams=5)
translations = translate_mgr.tokenizer.batch_decode(tokens, skip_special_tokens=True)
return ip.postprocess_batch(translations, lang=tgt_lang)
@app.get("/v1/health")
async def health_check():
memory_usage = torch.cuda.memory_allocated() / (24 * 1024**3) if cuda_available else 0 # 24GB VRAM
if memory_usage > 0.9:
logger.warning("GPU memory usage exceeds 90%; consider unloading models")
status = {
"status": "healthy",
"llm_loaded": llm_manager.is_loaded,
"tts_loaded": bool(tts_manager.model),
"asr_loaded": bool(asr_manager.model),
"translation_models": list(model_manager.models.keys()),
"gpu_memory_usage": f"{memory_usage:.2%}"
}
return status
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
args = parser.parse_args()
# Uvicorn tuning: 2 workers for 8 vCPUs and 24GB VRAM
uvicorn.run(app, host=args.host, port=args.port, workers=2)