|
import argparse |
|
import io |
|
import os |
|
import tempfile |
|
from time import time |
|
from typing import List |
|
import uvicorn |
|
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form, APIRouter |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse |
|
from PIL import Image |
|
from pydantic import BaseModel, field_validator |
|
from pydantic_settings import BaseSettings |
|
from slowapi import Limiter |
|
from slowapi.util import get_remote_address |
|
import torch |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModel, Gemma3ForConditionalGeneration |
|
from IndicTransToolkit import IndicProcessor |
|
import json |
|
import asyncio |
|
from contextlib import asynccontextmanager |
|
import soundfile as sf |
|
import numpy as np |
|
import requests |
|
import logging |
|
from starlette.responses import StreamingResponse |
|
from logging_config import logger |
|
from tts_config import SPEED, ResponseFormat, config as tts_config |
|
import torchaudio |
|
from tenacity import retry, stop_after_attempt, wait_exponential |
|
from torch.cuda.amp import autocast |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if device != "cpu" else torch.float32 |
|
logger.info(f"Using device: {device} with dtype: {torch_dtype}") |
|
|
|
|
|
cuda_available = torch.cuda.is_available() |
|
cuda_version = torch.version.cuda if cuda_available else None |
|
if cuda_available: |
|
device_idx = torch.cuda.current_device() |
|
capability = torch.cuda.get_device_capability(device_idx) |
|
logger.info(f"CUDA version: {cuda_version}, Compute Capability: {capability[0]}.{capability[1]}") |
|
else: |
|
logger.info("CUDA is not available; falling back to CPU.") |
|
|
|
|
|
class Settings(BaseSettings): |
|
llm_model_name: str = "google/gemma-3-4b-it" |
|
max_tokens: int = 512 |
|
host: str = "0.0.0.0" |
|
port: int = 7860 |
|
chat_rate_limit: str = "100/minute" |
|
speech_rate_limit: str = "5/minute" |
|
|
|
@field_validator("chat_rate_limit", "speech_rate_limit") |
|
def validate_rate_limit(cls, v): |
|
if not v.count("/") == 1 or not v.split("/")[0].isdigit(): |
|
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')") |
|
return v |
|
|
|
class Config: |
|
env_file = ".env" |
|
|
|
settings = Settings() |
|
|
|
|
|
request_queue = asyncio.Queue(maxsize=10) |
|
|
|
|
|
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) |
|
|
|
|
|
class LLMManager: |
|
def __init__(self, model_name: str, device: str = device): |
|
self.model_name = model_name |
|
self.device = torch.device(device) |
|
self.torch_dtype = torch_dtype |
|
self.model = None |
|
self.processor = None |
|
self.is_loaded = False |
|
self.token_cache = {} |
|
self.load() |
|
logger.info(f"LLMManager initialized with model {model_name} on {self.device}") |
|
|
|
def load(self): |
|
if not self.is_loaded: |
|
try: |
|
if self.device.type == "cuda": |
|
torch.set_float32_matmul_precision('high') |
|
logger.info("Enabled TF32 matrix multiplication for improved GPU performance") |
|
|
|
self.model = Gemma3ForConditionalGeneration.from_pretrained( |
|
self.model_name, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
max_memory={0: "10GiB"} |
|
).eval() |
|
|
|
self.processor = AutoProcessor.from_pretrained(self.model_name, use_fast=True) |
|
|
|
dummy_input = self.processor("test", return_tensors="pt").to(self.device) |
|
with torch.no_grad(): |
|
self.model.generate(**dummy_input, max_new_tokens=10) |
|
self.is_loaded = True |
|
logger.info(f"LLM {self.model_name} loaded and warmed up on {self.device}") |
|
except Exception as e: |
|
logger.error(f"Failed to load LLM: {str(e)}") |
|
self.is_loaded = False |
|
|
|
def unload(self): |
|
if self.is_loaded: |
|
del self.model |
|
del self.processor |
|
if self.device.type == "cuda": |
|
torch.cuda.empty_cache() |
|
logger.info(f"GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated") |
|
self.is_loaded = False |
|
self.token_cache.clear() |
|
logger.info(f"LLM {self.model_name} unloaded") |
|
|
|
async def generate(self, prompt: str, max_tokens: int = settings.max_tokens, temperature: float = 0.7) -> str: |
|
if not self.is_loaded: |
|
logger.warning("LLM not loaded; attempting reload") |
|
self.load() |
|
if not self.is_loaded: |
|
raise HTTPException(status_code=503, detail="LLM model unavailable") |
|
|
|
|
|
cache_key = f"{prompt}:{max_tokens}:{temperature}" |
|
if cache_key in self.token_cache: |
|
logger.info("Using cached response") |
|
return self.token_cache[cache_key] |
|
|
|
messages_vlm = [ |
|
{"role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]}, |
|
{"role": "user", "content": [{"type": "text", "text": prompt}]} |
|
] |
|
|
|
try: |
|
inputs_vlm = self.processor.apply_chat_template( |
|
messages_vlm, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device) |
|
|
|
with autocast(): |
|
generation = self.model.generate( |
|
**inputs_vlm, |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
top_p=0.9, |
|
temperature=temperature |
|
) |
|
generation = generation[0][inputs_vlm["input_ids"].shape[-1]:] |
|
|
|
response = self.processor.decode(generation, skip_special_tokens=True) |
|
self.token_cache[cache_key] = response |
|
logger.info(f"Generated response: {response}") |
|
return response |
|
except Exception as e: |
|
logger.error(f"Error in generation: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}") |
|
|
|
|
|
class TTSManager: |
|
def __init__(self, device_type=device): |
|
self.device_type = torch.device(device_type) |
|
self.model = None |
|
self.repo_id = "ai4bharat/IndicF5" |
|
self.load() |
|
|
|
def load(self): |
|
if not self.model: |
|
logger.info(f"Loading TTS model {self.repo_id} on {self.device_type}...") |
|
self.model = AutoModel.from_pretrained(self.repo_id, trust_remote_code=True).to(self.device_type) |
|
logger.info("TTS model loaded") |
|
|
|
def unload(self): |
|
if self.model: |
|
del self.model |
|
if self.device_type.type == "cuda": |
|
torch.cuda.empty_cache() |
|
logger.info(f"TTS GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated") |
|
self.model = None |
|
logger.info("TTS model unloaded") |
|
|
|
def synthesize(self, text, ref_audio_path, ref_text): |
|
if not self.model: |
|
raise ValueError("TTS model not loaded") |
|
with autocast(): |
|
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text) |
|
|
|
|
|
class TranslateManager: |
|
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True): |
|
self.device_type = torch.device(device_type) |
|
self.tokenizer, self.model = self.initialize_model(src_lang, tgt_lang, use_distilled) |
|
if self.model: |
|
self.warm_up() |
|
|
|
def initialize_model(self, src_lang, tgt_lang, use_distilled=True): |
|
try: |
|
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"): |
|
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if use_distilled else "ai4bharat/indictrans2-en-indic-1B" |
|
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"): |
|
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if use_distilled else "ai4bharat/indictrans2-indic-en-1B" |
|
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"): |
|
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if use_distilled else "ai4bharat/indictrans2-indic-indic-1B" |
|
else: |
|
raise ValueError("Invalid language combination") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2" |
|
).to(self.device_type) |
|
return tokenizer, model |
|
except Exception as e: |
|
logger.error(f"Failed to load translation model: {str(e)}") |
|
return None, None |
|
|
|
def warm_up(self): |
|
dummy_input = self.tokenizer("test", return_tensors="pt").to(self.device_type) |
|
with torch.no_grad(), autocast(): |
|
self.model.generate(**dummy_input, max_length=10) |
|
logger.info("Translation model warmed up") |
|
|
|
def unload(self): |
|
if self.model: |
|
del self.model |
|
del self.tokenizer |
|
if self.device_type.type == "cuda": |
|
torch.cuda.empty_cache() |
|
logger.info(f"Translation GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated") |
|
self.model = None |
|
self.tokenizer = None |
|
logger.info("Translation model unloaded") |
|
|
|
|
|
class ModelManager: |
|
def __init__(self, device_type=device, use_distilled=True): |
|
self.models = {} |
|
self.device_type = device_type |
|
self.use_distilled = use_distilled |
|
self.preload_models() |
|
|
|
def preload_models(self): |
|
translation_pairs = [ |
|
('eng_Latn', 'kan_Knda', 'eng_indic'), |
|
('kan_Knda', 'eng_Latn', 'indic_eng'), |
|
('kan_Knda', 'hin_Deva', 'indic_indic') |
|
] |
|
for src_lang, tgt_lang, key in translation_pairs: |
|
logger.info(f"Preloading translation model for {src_lang} -> {tgt_lang}...") |
|
self.models[key] = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled) |
|
|
|
def get_model(self, src_lang, tgt_lang): |
|
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"): |
|
key = 'eng_indic' |
|
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"): |
|
key = 'indic_eng' |
|
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"): |
|
key = 'indic_indic' |
|
else: |
|
raise ValueError("Invalid language combination") |
|
if key not in self.models or not self.models[key].model: |
|
raise HTTPException(status_code=503, detail=f"Translation model for {key} unavailable") |
|
return self.models[key] |
|
|
|
|
|
class ASRModelManager: |
|
def __init__(self, device_type=device): |
|
self.device_type = torch.device(device_type) |
|
self.model = None |
|
self.model_language = {"kannada": "kn"} |
|
self.load() |
|
|
|
def load(self): |
|
if not self.model: |
|
logger.info(f"Loading ASR model on {self.device_type}...") |
|
self.model = AutoModel.from_pretrained( |
|
"ai4bharat/indic-conformer-600m-multilingual", |
|
trust_remote_code=True |
|
).to(self.device_type) |
|
logger.info("ASR model loaded") |
|
|
|
def unload(self): |
|
if self.model: |
|
del self.model |
|
if self.device_type.type == "cuda": |
|
torch.cuda.empty_cache() |
|
logger.info(f"ASR GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated") |
|
self.model = None |
|
logger.info("ASR model unloaded") |
|
|
|
|
|
llm_manager = LLMManager(settings.llm_model_name) |
|
model_manager = ModelManager() |
|
asr_manager = ASRModelManager() |
|
tts_manager = TTSManager() |
|
ip = IndicProcessor(inference=True) |
|
|
|
|
|
EXAMPLES = [ |
|
{ |
|
"audio_name": "KAN_F (Happy)", |
|
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav", |
|
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ।", |
|
}, |
|
] |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
prompt: str |
|
src_lang: str = "kan_Knda" |
|
tgt_lang: str = "kan_Knda" |
|
|
|
@field_validator("prompt") |
|
def prompt_must_be_valid(cls, v): |
|
if len(v) > 1000: |
|
raise ValueError("Prompt cannot exceed 1000 characters") |
|
return v.strip() |
|
|
|
class ChatResponse(BaseModel): |
|
response: str |
|
|
|
class KannadaSynthesizeRequest(BaseModel): |
|
text: str |
|
|
|
@field_validator("text") |
|
def text_must_be_valid(cls, v): |
|
if len(v) > 500: |
|
raise ValueError("Text cannot exceed 500 characters") |
|
return v.strip() |
|
|
|
class TranscriptionResponse(BaseModel): |
|
text: str |
|
|
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10)) |
|
def load_audio_from_url(url: str): |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
audio_data, sample_rate = sf.read(io.BytesIO(response.content)) |
|
return sample_rate, audio_data |
|
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL after retries") |
|
|
|
async def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str) -> io.BytesIO: |
|
async with request_queue: |
|
ref_audio_url = None |
|
for example in EXAMPLES: |
|
if example["audio_name"] == ref_audio_name: |
|
ref_audio_url = example["audio_url"] |
|
if not ref_text: |
|
ref_text = example["ref_text"] |
|
break |
|
|
|
if not ref_audio_url: |
|
raise HTTPException(status_code=400, detail=f"Invalid reference audio name: {ref_audio_name}") |
|
if not text.strip() or not ref_text.strip(): |
|
raise HTTPException(status_code=400, detail="Text or reference text cannot be empty") |
|
|
|
logger.info(f"Synthesizing speech for text: {text[:50]}... with ref_audio: {ref_audio_name}") |
|
sample_rate, audio_data = load_audio_from_url(ref_audio_url) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_ref_audio: |
|
sf.write(temp_ref_audio.name, audio_data, sample_rate, format='WAV') |
|
temp_ref_audio.flush() |
|
audio = tts_manager.synthesize(text, temp_ref_audio.name, ref_text) |
|
|
|
if audio.dtype == np.int16: |
|
audio = audio.astype(np.float32) / 32768.0 |
|
output_buffer = io.BytesIO() |
|
sf.write(output_buffer, audio, 24000, format='WAV') |
|
output_buffer.seek(0) |
|
logger.info("Speech synthesis completed") |
|
return output_buffer |
|
|
|
|
|
app = FastAPI( |
|
title="Optimized Dhwani API", |
|
description="AI Chat API with optimized performance and robustness", |
|
version="1.0.0", |
|
lifespan=lifespan |
|
) |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=False, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
@app.middleware("http") |
|
async def add_request_timing(request: Request, call_next): |
|
start_time = time() |
|
response = await call_next(request) |
|
end_time = time() |
|
duration = end_time - start_time |
|
logger.info(f"Request to {request.url.path} took {duration:.3f} seconds") |
|
response.headers["X-Response-Time"] = f"{duration:.3f}" |
|
return response |
|
|
|
limiter = Limiter(key_func=get_remote_address) |
|
app.state.limiter = limiter |
|
|
|
|
|
@asynccontextmanager |
|
async def lifespan(app: FastAPI): |
|
logger.info("Starting server with preloaded models...") |
|
yield |
|
llm_manager.unload() |
|
tts_manager.unload() |
|
asr_manager.unload() |
|
for model in model_manager.models.values(): |
|
model.unload() |
|
logger.info("Server shutdown complete; all models unloaded") |
|
|
|
|
|
@app.post("/v1/speech_to_speech", response_class=StreamingResponse) |
|
async def speech_to_speech( |
|
request: Request, |
|
file: UploadFile = File(...), |
|
language: str = Query(..., enum=list(asr_manager.model_language.keys())), |
|
): |
|
async with request_queue: |
|
if not tts_manager.model or not asr_manager.model: |
|
raise HTTPException(status_code=503, detail="TTS or ASR model not loaded") |
|
|
|
audio_data = await file.read() |
|
if not audio_data: |
|
raise HTTPException(status_code=400, detail="Uploaded audio file is empty") |
|
if len(audio_data) > 10 * 1024 * 1024: |
|
raise HTTPException(status_code=400, detail="Audio file exceeds 10MB limit") |
|
|
|
logger.info(f"Processing speech-to-speech for file: {file.filename} in language: {language}") |
|
try: |
|
|
|
wav, sr = torchaudio.load(io.BytesIO(audio_data), backend="cuda" if cuda_available else "cpu") |
|
wav = torch.mean(wav, dim=0, keepdim=True).to(device) |
|
target_sample_rate = 16000 |
|
if sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sr, target_sample_rate).to(device) |
|
wav = resampler(wav) |
|
with autocast(), torch.no_grad(): |
|
transcription = asr_manager.model(wav, asr_manager.model_language[language], "rnnt") |
|
logger.info(f"Transcribed text: {transcription[:50]}...") |
|
|
|
chat_request = ChatRequest( |
|
prompt=transcription, |
|
src_lang="kan_Knda", |
|
tgt_lang="kan_Knda" |
|
) |
|
translate_mgr = model_manager.get_model(chat_request.src_lang, "eng_Latn") |
|
if translate_mgr.model: |
|
translated_prompt = await perform_internal_translation( |
|
[chat_request.prompt], chat_request.src_lang, "eng_Latn" |
|
) |
|
prompt_to_process = translated_prompt[0] |
|
else: |
|
prompt_to_process = chat_request.prompt |
|
|
|
response = await llm_manager.generate(prompt_to_process) |
|
if chat_request.tgt_lang != "eng_Latn": |
|
translate_mgr = model_manager.get_model("eng_Latn", chat_request.tgt_lang) |
|
if translate_mgr.model: |
|
translated_response = await perform_internal_translation( |
|
[response], "eng_Latn", chat_request.tgt_lang |
|
) |
|
final_response = translated_response[0] |
|
else: |
|
final_response = response |
|
else: |
|
final_response = response |
|
logger.info(f"Processed text: {final_response[:50]}...") |
|
|
|
audio_buffer = await synthesize_speech(tts_manager, final_response, "KAN_F (Happy)", EXAMPLES[0]["ref_text"]) |
|
logger.info("Speech-to-speech processing completed") |
|
return StreamingResponse( |
|
audio_buffer, |
|
media_type="audio/wav", |
|
headers={"Content-Disposition": "attachment; filename=speech_to_speech_output.wav"} |
|
) |
|
except Exception as e: |
|
logger.error(f"Error in speech-to-speech pipeline: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Speech-to-speech failed: {str(e)}") |
|
|
|
@app.post("/v1/chat", response_model=ChatResponse) |
|
@limiter.limit(settings.chat_rate_limit) |
|
async def chat(request: Request, chat_request: ChatRequest): |
|
async with request_queue: |
|
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}") |
|
try: |
|
if chat_request.src_lang != "eng_Latn": |
|
translate_mgr = model_manager.get_model(chat_request.src_lang, "eng_Latn") |
|
if translate_mgr.model: |
|
translated_prompt = await perform_internal_translation( |
|
[chat_request.prompt], chat_request.src_lang, "eng_Latn" |
|
) |
|
prompt_to_process = translated_prompt[0] |
|
logger.info(f"Translated prompt to English: {prompt_to_process}") |
|
else: |
|
prompt_to_process = chat_request.prompt |
|
else: |
|
prompt_to_process = chat_request.prompt |
|
|
|
response = await llm_manager.generate(prompt_to_process) |
|
logger.info(f"Generated English response: {response}") |
|
|
|
if chat_request.tgt_lang != "eng_Latn": |
|
translate_mgr = model_manager.get_model("eng_Latn", chat_request.tgt_lang) |
|
if translate_mgr.model: |
|
translated_response = await perform_internal_translation( |
|
[response], "eng_Latn", chat_request.tgt_lang |
|
) |
|
final_response = translated_response[0] |
|
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}") |
|
else: |
|
final_response = response |
|
else: |
|
final_response = response |
|
return ChatResponse(response=final_response) |
|
except Exception as e: |
|
logger.error(f"Error in chat: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}") |
|
|
|
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]: |
|
translate_mgr = model_manager.get_model(src_lang, tgt_lang) |
|
if not translate_mgr.model: |
|
raise HTTPException(status_code=503, detail="Translation model unavailable") |
|
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=tgt_lang) |
|
inputs = translate_mgr.tokenizer(batch, truncation=True, padding="longest", return_tensors="pt").to(device) |
|
with torch.no_grad(), autocast(): |
|
tokens = translate_mgr.model.generate(**inputs, max_length=256, num_beams=5) |
|
translations = translate_mgr.tokenizer.batch_decode(tokens, skip_special_tokens=True) |
|
return ip.postprocess_batch(translations, lang=tgt_lang) |
|
|
|
@app.get("/v1/health") |
|
async def health_check(): |
|
memory_usage = torch.cuda.memory_allocated() / (24 * 1024**3) if cuda_available else 0 |
|
if memory_usage > 0.9: |
|
logger.warning("GPU memory usage exceeds 90%; consider unloading models") |
|
status = { |
|
"status": "healthy", |
|
"llm_loaded": llm_manager.is_loaded, |
|
"tts_loaded": bool(tts_manager.model), |
|
"asr_loaded": bool(asr_manager.model), |
|
"translation_models": list(model_manager.models.keys()), |
|
"gpu_memory_usage": f"{memory_usage:.2%}" |
|
} |
|
return status |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run the FastAPI server.") |
|
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.") |
|
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.") |
|
args = parser.parse_args() |
|
|
|
|
|
uvicorn.run(app, host=args.host, port=args.port, workers=2) |