File size: 24,420 Bytes
475b0b9 f0d2c94 475b0b9 460983d 475b0b9 224556e 37b0941 224556e 1936ef7 7a61b58 1936ef7 37b0941 1936ef7 37b0941 ba89109 37b0941 7a61b58 7e9e8cc 37b0941 7e9e8cc 7a61b58 7e9e8cc 7a61b58 7e9e8cc 7a61b58 7e9e8cc 7a61b58 1936ef7 7a61b58 1936ef7 7a61b58 1936ef7 6efcad4 1936ef7 6efcad4 37b0941 773ab72 37b0941 773ab72 564e070 773ab72 564e070 773ab72 a9b565f 564e070 37b0941 773ab72 4ec2bfb 773ab72 564e070 7e9e8cc 564e070 4ec2bfb 8308b9e 773ab72 37b0941 564e070 37b0941 773ab72 37b0941 773ab72 a9b565f 37b0941 773ab72 2472b8d 7e9e8cc 2472b8d 564e070 7e9e8cc 2472b8d 564e070 773ab72 37b0941 4ec2bfb 37b0941 773ab72 37b0941 564e070 37b0941 564e070 773ab72 7e9e8cc 773ab72 37b0941 773ab72 37b0941 773ab72 37b0941 0a0efec 7e9e8cc 0a0efec 37b0941 0a0efec 4ec2bfb a9b565f 7e9e8cc 0a0efec 37b0941 fea8b58 37b0941 224556e c8c1a0a 7e9e8cc c8c1a0a 37b0941 224556e 7e9e8cc 37b0941 2472b8d 37b0941 224556e 7e9e8cc 37b0941 224556e 37b0941 224556e 4d3fcd9 fea8b58 4d3fcd9 37b0941 4d3fcd9 224556e 37b0941 1936ef7 4d3fcd9 1936ef7 4d3fcd9 1936ef7 4d3fcd9 37b0941 4d3fcd9 1936ef7 37b0941 1936ef7 7e9e8cc 1936ef7 37b0941 1936ef7 4ec2bfb a9b565f 7e9e8cc 4ec2bfb 8308b9e a9b565f 7e9e8cc 4ec2bfb 1936ef7 7e9e8cc 1936ef7 224556e 1936ef7 0a0efec 1936ef7 224556e 37b0941 94b0142 475b0b9 1936ef7 475b0b9 37b0941 1936ef7 37b0941 4ec2bfb 37b0941 4ec2bfb 37b0941 1936ef7 37b0941 1936ef7 37b0941 1936ef7 230a925 1936ef7 37b0941 475b0b9 37b0941 475b0b9 37b0941 475b0b9 37b0941 475b0b9 37b0941 475b0b9 37b0941 475b0b9 37b0941 460983d 37b0941 224556e 37b0941 fea8b58 37b0941 fea8b58 37b0941 fea8b58 37b0941 fea8b58 475b0b9 f238ccb 37b0941 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import argparse
import io
import os
import tempfile
from time import time
from typing import List
import uvicorn
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form, APIRouter
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
from PIL import Image
from pydantic import BaseModel, field_validator
from pydantic_settings import BaseSettings
from slowapi import Limiter
from slowapi.util import get_remote_address
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModel, Gemma3ForConditionalGeneration
from IndicTransToolkit import IndicProcessor
import json
import asyncio
from contextlib import asynccontextmanager
import soundfile as sf
import numpy as np
import requests
import logging
from starlette.responses import StreamingResponse
from logging_config import logger # Assumed external logging config
from tts_config import SPEED, ResponseFormat, config as tts_config # Assumed external TTS config
import torchaudio
from tenacity import retry, stop_after_attempt, wait_exponential
from torch.cuda.amp import autocast
# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32 # Use float16 for speed
logger.info(f"Using device: {device} with dtype: {torch_dtype}")
# Check CUDA availability and version
cuda_available = torch.cuda.is_available()
cuda_version = torch.version.cuda if cuda_available else None
if cuda_available:
device_idx = torch.cuda.current_device()
capability = torch.cuda.get_device_capability(device_idx)
logger.info(f"CUDA version: {cuda_version}, Compute Capability: {capability[0]}.{capability[1]}")
else:
logger.info("CUDA is not available; falling back to CPU.")
# Settings
class Settings(BaseSettings):
llm_model_name: str = "google/gemma-3-4b-it"
max_tokens: int = 512
host: str = "0.0.0.0"
port: int = 7860
chat_rate_limit: str = "100/minute"
speech_rate_limit: str = "5/minute"
@field_validator("chat_rate_limit", "speech_rate_limit")
def validate_rate_limit(cls, v):
if not v.count("/") == 1 or not v.split("/")[0].isdigit():
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
return v
class Config:
env_file = ".env"
settings = Settings()
# Request queue for concurrency control (max 10 concurrent GPU tasks)
request_queue = asyncio.Queue(maxsize=10)
# Logging optimization
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
# LLM Manager with persistent loading and improved caching
class LLMManager:
def __init__(self, model_name: str, device: str = device):
self.model_name = model_name
self.device = torch.device(device)
self.torch_dtype = torch_dtype
self.model = None
self.processor = None
self.is_loaded = False
self.token_cache = {}
self.load() # Load persistently at initialization
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
def load(self):
if not self.is_loaded:
try:
if self.device.type == "cuda":
torch.set_float32_matmul_precision('high')
logger.info("Enabled TF32 matrix multiplication for improved GPU performance")
self.model = Gemma3ForConditionalGeneration.from_pretrained(
self.model_name,
device_map="auto",
torch_dtype=torch.float16, # Use float16 for speed
max_memory={0: "10GiB"}
).eval()
self.processor = AutoProcessor.from_pretrained(self.model_name, use_fast=True)
# Warm-up model
dummy_input = self.processor("test", return_tensors="pt").to(self.device)
with torch.no_grad():
self.model.generate(**dummy_input, max_new_tokens=10)
self.is_loaded = True
logger.info(f"LLM {self.model_name} loaded and warmed up on {self.device}")
except Exception as e:
logger.error(f"Failed to load LLM: {str(e)}")
self.is_loaded = False # Allow graceful degradation
def unload(self):
if self.is_loaded:
del self.model
del self.processor
if self.device.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.is_loaded = False
self.token_cache.clear()
logger.info(f"LLM {self.model_name} unloaded")
async def generate(self, prompt: str, max_tokens: int = settings.max_tokens, temperature: float = 0.7) -> str:
if not self.is_loaded:
logger.warning("LLM not loaded; attempting reload")
self.load()
if not self.is_loaded:
raise HTTPException(status_code=503, detail="LLM model unavailable")
# Improved cache key with parameters
cache_key = f"{prompt}:{max_tokens}:{temperature}"
if cache_key in self.token_cache:
logger.info("Using cached response")
return self.token_cache[cache_key]
messages_vlm = [
{"role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
try:
inputs_vlm = self.processor.apply_chat_template(
messages_vlm,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
with autocast(): # Mixed precision for speed
generation = self.model.generate(
**inputs_vlm,
max_new_tokens=max_tokens,
do_sample=True,
top_p=0.9,
temperature=temperature
)
generation = generation[0][inputs_vlm["input_ids"].shape[-1]:]
response = self.processor.decode(generation, skip_special_tokens=True)
self.token_cache[cache_key] = response
logger.info(f"Generated response: {response}")
return response
except Exception as e:
logger.error(f"Error in generation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
# TTS Manager with file-based synthesis
class TTSManager:
def __init__(self, device_type=device):
self.device_type = torch.device(device_type)
self.model = None
self.repo_id = "ai4bharat/IndicF5"
self.load() # Persistent loading
def load(self):
if not self.model:
logger.info(f"Loading TTS model {self.repo_id} on {self.device_type}...")
self.model = AutoModel.from_pretrained(self.repo_id, trust_remote_code=True).to(self.device_type)
logger.info("TTS model loaded")
def unload(self):
if self.model:
del self.model
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"TTS GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
logger.info("TTS model unloaded")
def synthesize(self, text, ref_audio_path, ref_text):
if not self.model:
raise ValueError("TTS model not loaded")
with autocast(): # Mixed precision
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text)
# Translation Manager with warm-up and error handling
class TranslateManager:
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True):
self.device_type = torch.device(device_type)
self.tokenizer, self.model = self.initialize_model(src_lang, tgt_lang, use_distilled)
if self.model:
self.warm_up()
def initialize_model(self, src_lang, tgt_lang, use_distilled=True):
try:
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if use_distilled else "ai4bharat/indictrans2-en-indic-1B"
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if use_distilled else "ai4bharat/indictrans2-indic-en-1B"
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
else:
raise ValueError("Invalid language combination")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
).to(self.device_type)
return tokenizer, model
except Exception as e:
logger.error(f"Failed to load translation model: {str(e)}")
return None, None # Graceful degradation
def warm_up(self):
dummy_input = self.tokenizer("test", return_tensors="pt").to(self.device_type)
with torch.no_grad(), autocast():
self.model.generate(**dummy_input, max_length=10)
logger.info("Translation model warmed up")
def unload(self):
if self.model:
del self.model
del self.tokenizer
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"Translation GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
self.tokenizer = None
logger.info("Translation model unloaded")
# Model Manager with preloading
class ModelManager:
def __init__(self, device_type=device, use_distilled=True):
self.models = {}
self.device_type = device_type
self.use_distilled = use_distilled
self.preload_models()
def preload_models(self):
translation_pairs = [
('eng_Latn', 'kan_Knda', 'eng_indic'),
('kan_Knda', 'eng_Latn', 'indic_eng'),
('kan_Knda', 'hin_Deva', 'indic_indic')
]
for src_lang, tgt_lang, key in translation_pairs:
logger.info(f"Preloading translation model for {src_lang} -> {tgt_lang}...")
self.models[key] = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
def get_model(self, src_lang, tgt_lang):
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
key = 'eng_indic'
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
key = 'indic_eng'
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
key = 'indic_indic'
else:
raise ValueError("Invalid language combination")
if key not in self.models or not self.models[key].model:
raise HTTPException(status_code=503, detail=f"Translation model for {key} unavailable")
return self.models[key]
# ASR Manager with GPU audio processing
class ASRModelManager:
def __init__(self, device_type=device):
self.device_type = torch.device(device_type)
self.model = None
self.model_language = {"kannada": "kn"}
self.load()
def load(self):
if not self.model:
logger.info(f"Loading ASR model on {self.device_type}...")
self.model = AutoModel.from_pretrained(
"ai4bharat/indic-conformer-600m-multilingual",
trust_remote_code=True
).to(self.device_type)
logger.info("ASR model loaded")
def unload(self):
if self.model:
del self.model
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"ASR GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
logger.info("ASR model unloaded")
# Global Managers
llm_manager = LLMManager(settings.llm_model_name)
model_manager = ModelManager()
asr_manager = ASRModelManager()
tts_manager = TTSManager()
ip = IndicProcessor(inference=True)
# TTS Constants
EXAMPLES = [
{
"audio_name": "KAN_F (Happy)",
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav",
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ।",
},
]
# Pydantic Models
class ChatRequest(BaseModel):
prompt: str
src_lang: str = "kan_Knda"
tgt_lang: str = "kan_Knda"
@field_validator("prompt")
def prompt_must_be_valid(cls, v):
if len(v) > 1000:
raise ValueError("Prompt cannot exceed 1000 characters")
return v.strip()
class ChatResponse(BaseModel):
response: str
class KannadaSynthesizeRequest(BaseModel):
text: str
@field_validator("text")
def text_must_be_valid(cls, v):
if len(v) > 500:
raise ValueError("Text cannot exceed 500 characters")
return v.strip()
class TranscriptionResponse(BaseModel):
text: str
# TTS Functions
@retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10))
def load_audio_from_url(url: str):
response = requests.get(url)
if response.status_code == 200:
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
return sample_rate, audio_data
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL after retries")
async def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str) -> io.BytesIO:
async with request_queue:
ref_audio_url = None
for example in EXAMPLES:
if example["audio_name"] == ref_audio_name:
ref_audio_url = example["audio_url"]
if not ref_text:
ref_text = example["ref_text"]
break
if not ref_audio_url:
raise HTTPException(status_code=400, detail=f"Invalid reference audio name: {ref_audio_name}")
if not text.strip() or not ref_text.strip():
raise HTTPException(status_code=400, detail="Text or reference text cannot be empty")
logger.info(f"Synthesizing speech for text: {text[:50]}... with ref_audio: {ref_audio_name}")
sample_rate, audio_data = load_audio_from_url(ref_audio_url)
# Use temporary file since IndicF5 requires a path
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_ref_audio:
sf.write(temp_ref_audio.name, audio_data, sample_rate, format='WAV')
temp_ref_audio.flush()
audio = tts_manager.synthesize(text, temp_ref_audio.name, ref_text)
if audio.dtype == np.int16:
audio = audio.astype(np.float32) / 32768.0
output_buffer = io.BytesIO()
sf.write(output_buffer, audio, 24000, format='WAV')
output_buffer.seek(0)
logger.info("Speech synthesis completed")
return output_buffer
# FastAPI App
app = FastAPI(
title="Optimized Dhwani API",
description="AI Chat API with optimized performance and robustness",
version="1.0.0",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
@app.middleware("http")
async def add_request_timing(request: Request, call_next):
start_time = time()
response = await call_next(request)
end_time = time()
duration = end_time - start_time
logger.info(f"Request to {request.url.path} took {duration:.3f} seconds")
response.headers["X-Response-Time"] = f"{duration:.3f}"
return response
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Lifespan Event Handler
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.info("Starting server with preloaded models...")
yield
llm_manager.unload()
tts_manager.unload()
asr_manager.unload()
for model in model_manager.models.values():
model.unload()
logger.info("Server shutdown complete; all models unloaded")
# Endpoints
@app.post("/v1/speech_to_speech", response_class=StreamingResponse)
async def speech_to_speech(
request: Request,
file: UploadFile = File(...),
language: str = Query(..., enum=list(asr_manager.model_language.keys())),
):
async with request_queue:
if not tts_manager.model or not asr_manager.model:
raise HTTPException(status_code=503, detail="TTS or ASR model not loaded")
audio_data = await file.read()
if not audio_data:
raise HTTPException(status_code=400, detail="Uploaded audio file is empty")
if len(audio_data) > 10 * 1024 * 1024:
raise HTTPException(status_code=400, detail="Audio file exceeds 10MB limit")
logger.info(f"Processing speech-to-speech for file: {file.filename} in language: {language}")
try:
# GPU-accelerated transcription
wav, sr = torchaudio.load(io.BytesIO(audio_data), backend="cuda" if cuda_available else "cpu")
wav = torch.mean(wav, dim=0, keepdim=True).to(device)
target_sample_rate = 16000
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate).to(device)
wav = resampler(wav)
with autocast(), torch.no_grad():
transcription = asr_manager.model(wav, asr_manager.model_language[language], "rnnt")
logger.info(f"Transcribed text: {transcription[:50]}...")
chat_request = ChatRequest(
prompt=transcription,
src_lang="kan_Knda",
tgt_lang="kan_Knda"
)
translate_mgr = model_manager.get_model(chat_request.src_lang, "eng_Latn")
if translate_mgr.model:
translated_prompt = await perform_internal_translation(
[chat_request.prompt], chat_request.src_lang, "eng_Latn"
)
prompt_to_process = translated_prompt[0]
else:
prompt_to_process = chat_request.prompt
response = await llm_manager.generate(prompt_to_process)
if chat_request.tgt_lang != "eng_Latn":
translate_mgr = model_manager.get_model("eng_Latn", chat_request.tgt_lang)
if translate_mgr.model:
translated_response = await perform_internal_translation(
[response], "eng_Latn", chat_request.tgt_lang
)
final_response = translated_response[0]
else:
final_response = response
else:
final_response = response
logger.info(f"Processed text: {final_response[:50]}...")
audio_buffer = await synthesize_speech(tts_manager, final_response, "KAN_F (Happy)", EXAMPLES[0]["ref_text"])
logger.info("Speech-to-speech processing completed")
return StreamingResponse(
audio_buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=speech_to_speech_output.wav"}
)
except Exception as e:
logger.error(f"Error in speech-to-speech pipeline: {str(e)}")
raise HTTPException(status_code=500, detail=f"Speech-to-speech failed: {str(e)}")
@app.post("/v1/chat", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat(request: Request, chat_request: ChatRequest):
async with request_queue:
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
try:
if chat_request.src_lang != "eng_Latn":
translate_mgr = model_manager.get_model(chat_request.src_lang, "eng_Latn")
if translate_mgr.model:
translated_prompt = await perform_internal_translation(
[chat_request.prompt], chat_request.src_lang, "eng_Latn"
)
prompt_to_process = translated_prompt[0]
logger.info(f"Translated prompt to English: {prompt_to_process}")
else:
prompt_to_process = chat_request.prompt
else:
prompt_to_process = chat_request.prompt
response = await llm_manager.generate(prompt_to_process)
logger.info(f"Generated English response: {response}")
if chat_request.tgt_lang != "eng_Latn":
translate_mgr = model_manager.get_model("eng_Latn", chat_request.tgt_lang)
if translate_mgr.model:
translated_response = await perform_internal_translation(
[response], "eng_Latn", chat_request.tgt_lang
)
final_response = translated_response[0]
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
else:
final_response = response
else:
final_response = response
return ChatResponse(response=final_response)
except Exception as e:
logger.error(f"Error in chat: {str(e)}")
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
translate_mgr = model_manager.get_model(src_lang, tgt_lang)
if not translate_mgr.model:
raise HTTPException(status_code=503, detail="Translation model unavailable")
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=tgt_lang)
inputs = translate_mgr.tokenizer(batch, truncation=True, padding="longest", return_tensors="pt").to(device)
with torch.no_grad(), autocast():
tokens = translate_mgr.model.generate(**inputs, max_length=256, num_beams=5)
translations = translate_mgr.tokenizer.batch_decode(tokens, skip_special_tokens=True)
return ip.postprocess_batch(translations, lang=tgt_lang)
@app.get("/v1/health")
async def health_check():
memory_usage = torch.cuda.memory_allocated() / (24 * 1024**3) if cuda_available else 0 # 24GB VRAM
if memory_usage > 0.9:
logger.warning("GPU memory usage exceeds 90%; consider unloading models")
status = {
"status": "healthy",
"llm_loaded": llm_manager.is_loaded,
"tts_loaded": bool(tts_manager.model),
"asr_loaded": bool(asr_manager.model),
"translation_models": list(model_manager.models.keys()),
"gpu_memory_usage": f"{memory_usage:.2%}"
}
return status
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
args = parser.parse_args()
# Uvicorn tuning: 2 workers for 8 vCPUs and 24GB VRAM
uvicorn.run(app, host=args.host, port=args.port, workers=2) |