sachin
commited on
Commit
·
460983d
1
Parent(s):
564e070
add- llm optimisation
Browse files- Dockerfile +1 -1
- requirements.txt +2 -1
- src/server/main.py +152 -162
Dockerfile
CHANGED
@@ -6,6 +6,6 @@ COPY . .
|
|
6 |
ENV HF_HOME=/data/huggingface
|
7 |
# Expose port
|
8 |
EXPOSE 7860
|
9 |
-
|
10 |
# Start the server
|
11 |
CMD ["python", "/app/src/server/main.py", "--host", "0.0.0.0", "--port", "7860", "--config", "config_two"]
|
|
|
6 |
ENV HF_HOME=/data/huggingface
|
7 |
# Expose port
|
8 |
EXPOSE 7860
|
9 |
+
RUN pip install torchvision
|
10 |
# Start the server
|
11 |
CMD ["python", "/app/src/server/main.py", "--host", "0.0.0.0", "--port", "7860", "--config", "config_two"]
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch
|
|
|
2 |
accelerate
|
3 |
bitsandbytes
|
4 |
pillow
|
@@ -175,7 +176,7 @@ torch==2.6.0
|
|
175 |
torchaudio==2.6.0
|
176 |
torchdiffeq==0.2.5
|
177 |
tqdm==4.67.1
|
178 |
-
transformers
|
179 |
transformers-stream-generator==0.0.5
|
180 |
triton==3.2.0
|
181 |
typer==0.15.2
|
|
|
1 |
torch
|
2 |
+
torchvision
|
3 |
accelerate
|
4 |
bitsandbytes
|
5 |
pillow
|
|
|
176 |
torchaudio==2.6.0
|
177 |
torchdiffeq==0.2.5
|
178 |
tqdm==4.67.1
|
179 |
+
transformers
|
180 |
transformers-stream-generator==0.0.5
|
181 |
triton==3.2.0
|
182 |
typer==0.15.2
|
src/server/main.py
CHANGED
@@ -5,7 +5,7 @@ from time import time
|
|
5 |
from typing import List
|
6 |
import tempfile
|
7 |
import uvicorn
|
8 |
-
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
|
11 |
from PIL import Image
|
@@ -593,91 +593,10 @@ async def add_request_timing(request: Request, call_next):
|
|
593 |
limiter = Limiter(key_func=get_remote_address)
|
594 |
app.state.limiter = limiter
|
595 |
|
596 |
-
#
|
597 |
-
|
598 |
-
async def synthesize_kannada(request: KannadaSynthesizeRequest):
|
599 |
-
if not tts_manager.model:
|
600 |
-
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
601 |
-
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)")
|
602 |
-
if not request.text.strip():
|
603 |
-
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
604 |
-
|
605 |
-
audio_buffer = synthesize_speech(
|
606 |
-
tts_manager,
|
607 |
-
text=request.text,
|
608 |
-
ref_audio_name="KAN_F (Happy)",
|
609 |
-
ref_text=kannada_example["ref_text"]
|
610 |
-
)
|
611 |
-
|
612 |
-
return StreamingResponse(
|
613 |
-
audio_buffer,
|
614 |
-
media_type="audio/wav",
|
615 |
-
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"}
|
616 |
-
)
|
617 |
-
|
618 |
-
@app.post("/translate", response_model=TranslationResponse)
|
619 |
-
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
620 |
-
input_sentences = request.sentences
|
621 |
-
src_lang = request.src_lang
|
622 |
-
tgt_lang = request.tgt_lang
|
623 |
-
|
624 |
-
if not input_sentences:
|
625 |
-
raise HTTPException(status_code=400, detail="Input sentences are required")
|
626 |
|
627 |
-
|
628 |
-
inputs = translate_manager.tokenizer(
|
629 |
-
batch,
|
630 |
-
truncation=True,
|
631 |
-
padding="longest",
|
632 |
-
return_tensors="pt",
|
633 |
-
return_attention_mask=True,
|
634 |
-
).to(translate_manager.device_type)
|
635 |
-
|
636 |
-
with torch.no_grad():
|
637 |
-
generated_tokens = translate_manager.model.generate(
|
638 |
-
**inputs,
|
639 |
-
use_cache=True,
|
640 |
-
min_length=0,
|
641 |
-
max_length=256,
|
642 |
-
num_beams=5,
|
643 |
-
num_return_sequences=1,
|
644 |
-
)
|
645 |
-
|
646 |
-
with translate_manager.tokenizer.as_target_tokenizer():
|
647 |
-
generated_tokens = translate_manager.tokenizer.batch_decode(
|
648 |
-
generated_tokens.detach().cpu().tolist(),
|
649 |
-
skip_special_tokens=True,
|
650 |
-
clean_up_tokenization_spaces=True,
|
651 |
-
)
|
652 |
-
|
653 |
-
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
654 |
-
return TranslationResponse(translations=translations)
|
655 |
-
|
656 |
-
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
657 |
-
try:
|
658 |
-
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
659 |
-
except ValueError as e:
|
660 |
-
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
661 |
-
key = model_manager._get_model_key(src_lang, tgt_lang)
|
662 |
-
model_manager.load_model(src_lang, tgt_lang, key)
|
663 |
-
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
664 |
-
|
665 |
-
if not translate_manager.model:
|
666 |
-
translate_manager.load()
|
667 |
-
|
668 |
-
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
669 |
-
response = await translate(request, translate_manager)
|
670 |
-
return response.translations
|
671 |
-
|
672 |
-
@app.get("/v1/health")
|
673 |
-
async def health_check():
|
674 |
-
return {"status": "healthy", "model": settings.llm_model_name}
|
675 |
-
|
676 |
-
@app.get("/")
|
677 |
-
async def home():
|
678 |
-
return RedirectResponse(url="/docs")
|
679 |
-
|
680 |
-
@app.post("/v1/unload_all_models")
|
681 |
async def unload_all_models():
|
682 |
try:
|
683 |
logger.info("Starting to unload all models...")
|
@@ -688,7 +607,7 @@ async def unload_all_models():
|
|
688 |
logger.error(f"Error unloading models: {str(e)}")
|
689 |
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")
|
690 |
|
691 |
-
@
|
692 |
async def load_all_models():
|
693 |
try:
|
694 |
logger.info("Starting to load all models...")
|
@@ -699,32 +618,15 @@ async def load_all_models():
|
|
699 |
logger.error(f"Error loading models: {str(e)}")
|
700 |
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}")
|
701 |
|
702 |
-
@
|
703 |
-
async def translate_endpoint(request: TranslationRequest):
|
704 |
-
logger.info(f"Received translation request: {request.dict()}")
|
705 |
-
try:
|
706 |
-
translations = await perform_internal_translation(
|
707 |
-
sentences=request.sentences,
|
708 |
-
src_lang=request.src_lang,
|
709 |
-
tgt_lang=request.tgt_lang
|
710 |
-
)
|
711 |
-
logger.info(f"Translation successful: {translations}")
|
712 |
-
return TranslationResponse(translations=translations)
|
713 |
-
except Exception as e:
|
714 |
-
logger.error(f"Unexpected error during translation: {str(e)}")
|
715 |
-
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
|
716 |
-
|
717 |
-
@app.post("/v1/chat", response_model=ChatResponse)
|
718 |
@limiter.limit(settings.chat_rate_limit)
|
719 |
async def chat(request: Request, chat_request: ChatRequest):
|
720 |
if not chat_request.prompt:
|
721 |
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
722 |
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
723 |
-
|
724 |
-
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
|
725 |
-
|
726 |
try:
|
727 |
-
|
|
|
728 |
translated_prompt = await perform_internal_translation(
|
729 |
sentences=[chat_request.prompt],
|
730 |
src_lang=chat_request.src_lang,
|
@@ -734,12 +636,14 @@ async def chat(request: Request, chat_request: ChatRequest):
|
|
734 |
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
735 |
else:
|
736 |
prompt_to_process = chat_request.prompt
|
737 |
-
logger.info("Prompt in English
|
738 |
|
|
|
739 |
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
740 |
-
logger.info(f"Generated response: {response}")
|
741 |
|
742 |
-
|
|
|
743 |
translated_response = await perform_internal_translation(
|
744 |
sentences=[response],
|
745 |
src_lang="eng_Latn",
|
@@ -749,14 +653,14 @@ async def chat(request: Request, chat_request: ChatRequest):
|
|
749 |
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
|
750 |
else:
|
751 |
final_response = response
|
752 |
-
logger.info(
|
753 |
|
754 |
return ChatResponse(response=final_response)
|
755 |
except Exception as e:
|
756 |
logger.error(f"Error processing request: {str(e)}")
|
757 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
758 |
|
759 |
-
@
|
760 |
async def visual_query(
|
761 |
file: UploadFile = File(...),
|
762 |
query: str = Body(...),
|
@@ -768,6 +672,7 @@ async def visual_query(
|
|
768 |
if image.size == (0, 0):
|
769 |
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
770 |
|
|
|
771 |
if src_lang != "eng_Latn":
|
772 |
translated_query = await perform_internal_translation(
|
773 |
sentences=[query],
|
@@ -780,9 +685,11 @@ async def visual_query(
|
|
780 |
query_to_process = query
|
781 |
logger.info("Query already in English, no translation needed")
|
782 |
|
|
|
783 |
answer = await llm_manager.vision_query(image, query_to_process)
|
784 |
logger.info(f"Generated English answer: {answer}")
|
785 |
|
|
|
786 |
if tgt_lang != "eng_Latn":
|
787 |
translated_answer = await perform_internal_translation(
|
788 |
sentences=[answer],
|
@@ -800,7 +707,7 @@ async def visual_query(
|
|
800 |
logger.error(f"Error processing request: {str(e)}")
|
801 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
802 |
|
803 |
-
@
|
804 |
@limiter.limit(settings.chat_rate_limit)
|
805 |
async def chat_v2(
|
806 |
request: Request,
|
@@ -817,71 +724,154 @@ async def chat_v2(
|
|
817 |
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
818 |
|
819 |
try:
|
|
|
|
|
820 |
if image:
|
821 |
image_data = await image.read()
|
822 |
if not image_data:
|
823 |
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
824 |
img = Image.open(io.BytesIO(image_data))
|
825 |
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
prompt_to_process = prompt
|
836 |
-
logger.info("Prompt already in English, no translation needed")
|
837 |
-
|
838 |
-
decoded = await llm_manager.chat_v2(img, prompt_to_process)
|
839 |
-
logger.info(f"Generated English response: {decoded}")
|
840 |
-
|
841 |
-
if tgt_lang != "eng_Latn":
|
842 |
-
translated_response = await perform_internal_translation(
|
843 |
-
sentences=[decoded],
|
844 |
-
src_lang="eng_Latn",
|
845 |
-
tgt_lang=tgt_lang
|
846 |
-
)
|
847 |
-
final_response = translated_response[0]
|
848 |
-
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
849 |
-
else:
|
850 |
-
final_response = decoded
|
851 |
-
logger.info("Response kept in English, no translation needed")
|
852 |
else:
|
853 |
-
|
854 |
-
|
855 |
-
sentences=[prompt],
|
856 |
-
src_lang=src_lang,
|
857 |
-
tgt_lang="eng_Latn"
|
858 |
-
)
|
859 |
-
prompt_to_process = translated_prompt[0]
|
860 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
861 |
-
else:
|
862 |
-
prompt_to_process = prompt
|
863 |
-
logger.info("Prompt already in English, no translation needed")
|
864 |
|
865 |
-
|
866 |
-
|
|
|
|
|
|
|
|
|
867 |
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
|
|
879 |
|
880 |
return ChatResponse(response=final_response)
|
881 |
except Exception as e:
|
882 |
logger.error(f"Error processing request: {str(e)}")
|
883 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
884 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
885 |
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
886 |
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
887 |
if not asr_manager.model:
|
|
|
5 |
from typing import List
|
6 |
import tempfile
|
7 |
import uvicorn
|
8 |
+
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form, APIRouter
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
|
11 |
from PIL import Image
|
|
|
593 |
limiter = Limiter(key_func=get_remote_address)
|
594 |
app.state.limiter = limiter
|
595 |
|
596 |
+
# LLM Router
|
597 |
+
llm_router = APIRouter(prefix="/v1", tags=["LLM"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
+
@llm_router.post("/unload_all_models")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
async def unload_all_models():
|
601 |
try:
|
602 |
logger.info("Starting to unload all models...")
|
|
|
607 |
logger.error(f"Error unloading models: {str(e)}")
|
608 |
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")
|
609 |
|
610 |
+
@llm_router.post("/load_all_models")
|
611 |
async def load_all_models():
|
612 |
try:
|
613 |
logger.info("Starting to load all models...")
|
|
|
618 |
logger.error(f"Error loading models: {str(e)}")
|
619 |
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}")
|
620 |
|
621 |
+
@llm_router.post("/chat", response_model=ChatResponse)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
@limiter.limit(settings.chat_rate_limit)
|
623 |
async def chat(request: Request, chat_request: ChatRequest):
|
624 |
if not chat_request.prompt:
|
625 |
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
626 |
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
|
|
|
|
|
|
627 |
try:
|
628 |
+
# Step 1: Translate prompt to English if needed
|
629 |
+
if chat_request.src_lang != "eng_Latn":
|
630 |
translated_prompt = await perform_internal_translation(
|
631 |
sentences=[chat_request.prompt],
|
632 |
src_lang=chat_request.src_lang,
|
|
|
636 |
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
637 |
else:
|
638 |
prompt_to_process = chat_request.prompt
|
639 |
+
logger.info("Prompt already in English, no translation needed")
|
640 |
|
641 |
+
# Step 2: Generate response in English
|
642 |
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
643 |
+
logger.info(f"Generated English response: {response}")
|
644 |
|
645 |
+
# Step 3: Translate response to target language if needed
|
646 |
+
if chat_request.tgt_lang != "eng_Latn":
|
647 |
translated_response = await perform_internal_translation(
|
648 |
sentences=[response],
|
649 |
src_lang="eng_Latn",
|
|
|
653 |
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
|
654 |
else:
|
655 |
final_response = response
|
656 |
+
logger.info("Response kept in English, no translation needed")
|
657 |
|
658 |
return ChatResponse(response=final_response)
|
659 |
except Exception as e:
|
660 |
logger.error(f"Error processing request: {str(e)}")
|
661 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
662 |
|
663 |
+
@llm_router.post("/visual_query/")
|
664 |
async def visual_query(
|
665 |
file: UploadFile = File(...),
|
666 |
query: str = Body(...),
|
|
|
672 |
if image.size == (0, 0):
|
673 |
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
674 |
|
675 |
+
# Step 1: Translate query to English if needed
|
676 |
if src_lang != "eng_Latn":
|
677 |
translated_query = await perform_internal_translation(
|
678 |
sentences=[query],
|
|
|
685 |
query_to_process = query
|
686 |
logger.info("Query already in English, no translation needed")
|
687 |
|
688 |
+
# Step 2: Generate answer in English
|
689 |
answer = await llm_manager.vision_query(image, query_to_process)
|
690 |
logger.info(f"Generated English answer: {answer}")
|
691 |
|
692 |
+
# Step 3: Translate answer to target language if needed
|
693 |
if tgt_lang != "eng_Latn":
|
694 |
translated_answer = await perform_internal_translation(
|
695 |
sentences=[answer],
|
|
|
707 |
logger.error(f"Error processing request: {str(e)}")
|
708 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
709 |
|
710 |
+
@llm_router.post("/chat_v2", response_model=ChatResponse)
|
711 |
@limiter.limit(settings.chat_rate_limit)
|
712 |
async def chat_v2(
|
713 |
request: Request,
|
|
|
724 |
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
725 |
|
726 |
try:
|
727 |
+
# Step 1: Handle image if provided
|
728 |
+
img = None
|
729 |
if image:
|
730 |
image_data = await image.read()
|
731 |
if not image_data:
|
732 |
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
733 |
img = Image.open(io.BytesIO(image_data))
|
734 |
|
735 |
+
# Step 2: Translate prompt to English if needed
|
736 |
+
if src_lang != "eng_Latn":
|
737 |
+
translated_prompt = await perform_internal_translation(
|
738 |
+
sentences=[prompt],
|
739 |
+
src_lang=src_lang,
|
740 |
+
tgt_lang="eng_Latn"
|
741 |
+
)
|
742 |
+
prompt_to_process = translated_prompt[0]
|
743 |
+
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
744 |
else:
|
745 |
+
prompt_to_process = prompt
|
746 |
+
logger.info("Prompt already in English, no translation needed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
747 |
|
748 |
+
# Step 3: Generate response in English
|
749 |
+
if img:
|
750 |
+
response = await llm_manager.chat_v2(img, prompt_to_process)
|
751 |
+
else:
|
752 |
+
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
753 |
+
logger.info(f"Generated English response: {response}")
|
754 |
|
755 |
+
# Step 4: Translate response to target language if needed
|
756 |
+
if tgt_lang != "eng_Latn":
|
757 |
+
translated_response = await perform_internal_translation(
|
758 |
+
sentences=[response],
|
759 |
+
src_lang="eng_Latn",
|
760 |
+
tgt_lang=tgt_lang
|
761 |
+
)
|
762 |
+
final_response = translated_response[0]
|
763 |
+
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
764 |
+
else:
|
765 |
+
final_response = response
|
766 |
+
logger.info("Response kept in English, no translation needed")
|
767 |
|
768 |
return ChatResponse(response=final_response)
|
769 |
except Exception as e:
|
770 |
logger.error(f"Error processing request: {str(e)}")
|
771 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
772 |
|
773 |
+
# Include LLM Router
|
774 |
+
app.include_router(llm_router)
|
775 |
+
|
776 |
+
# Other API Endpoints
|
777 |
+
@app.post("/audio/speech", response_class=StreamingResponse)
|
778 |
+
async def synthesize_kannada(request: KannadaSynthesizeRequest):
|
779 |
+
if not tts_manager.model:
|
780 |
+
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
781 |
+
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)")
|
782 |
+
if not request.text.strip():
|
783 |
+
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
784 |
+
|
785 |
+
audio_buffer = synthesize_speech(
|
786 |
+
tts_manager,
|
787 |
+
text=request.text,
|
788 |
+
ref_audio_name="KAN_F (Happy)",
|
789 |
+
ref_text=kannada_example["ref_text"]
|
790 |
+
)
|
791 |
+
|
792 |
+
return StreamingResponse(
|
793 |
+
audio_buffer,
|
794 |
+
media_type="audio/wav",
|
795 |
+
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"}
|
796 |
+
)
|
797 |
+
|
798 |
+
@app.post("/translate", response_model=TranslationResponse)
|
799 |
+
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
800 |
+
input_sentences = request.sentences
|
801 |
+
src_lang = request.src_lang
|
802 |
+
tgt_lang = request.tgt_lang
|
803 |
+
|
804 |
+
if not input_sentences:
|
805 |
+
raise HTTPException(status_code=400, detail="Input sentences are required")
|
806 |
+
|
807 |
+
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
808 |
+
inputs = translate_manager.tokenizer(
|
809 |
+
batch,
|
810 |
+
truncation=True,
|
811 |
+
padding="longest",
|
812 |
+
return_tensors="pt",
|
813 |
+
return_attention_mask=True,
|
814 |
+
).to(translate_manager.device_type)
|
815 |
+
|
816 |
+
with torch.no_grad():
|
817 |
+
generated_tokens = translate_manager.model.generate(
|
818 |
+
**inputs,
|
819 |
+
use_cache=True,
|
820 |
+
min_length=0,
|
821 |
+
max_length=256,
|
822 |
+
num_beams=5,
|
823 |
+
num_return_sequences=1,
|
824 |
+
)
|
825 |
+
|
826 |
+
with translate_manager.tokenizer.as_target_tokenizer():
|
827 |
+
generated_tokens = translate_manager.tokenizer.batch_decode(
|
828 |
+
generated_tokens.detach().cpu().tolist(),
|
829 |
+
skip_special_tokens=True,
|
830 |
+
clean_up_tokenization_spaces=True,
|
831 |
+
)
|
832 |
+
|
833 |
+
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
834 |
+
return TranslationResponse(translations=translations)
|
835 |
+
|
836 |
+
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
837 |
+
try:
|
838 |
+
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
839 |
+
except ValueError as e:
|
840 |
+
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
841 |
+
key = model_manager._get_model_key(src_lang, tgt_lang)
|
842 |
+
model_manager.load_model(src_lang, tgt_lang, key)
|
843 |
+
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
844 |
+
|
845 |
+
if not translate_manager.model:
|
846 |
+
translate_manager.load()
|
847 |
+
|
848 |
+
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
849 |
+
response = await translate(request, translate_manager)
|
850 |
+
return response.translations
|
851 |
+
|
852 |
+
@app.get("/v1/health")
|
853 |
+
async def health_check():
|
854 |
+
return {"status": "healthy", "model": settings.llm_model_name}
|
855 |
+
|
856 |
+
@app.get("/")
|
857 |
+
async def home():
|
858 |
+
return RedirectResponse(url="/docs")
|
859 |
+
|
860 |
+
@app.post("/v1/translate", response_model=TranslationResponse)
|
861 |
+
async def translate_endpoint(request: TranslationRequest):
|
862 |
+
logger.info(f"Received translation request: {request.dict()}")
|
863 |
+
try:
|
864 |
+
translations = await perform_internal_translation(
|
865 |
+
sentences=request.sentences,
|
866 |
+
src_lang=request.src_lang,
|
867 |
+
tgt_lang=request.tgt_lang
|
868 |
+
)
|
869 |
+
logger.info(f"Translation successful: {translations}")
|
870 |
+
return TranslationResponse(translations=translations)
|
871 |
+
except Exception as e:
|
872 |
+
logger.error(f"Unexpected error during translation: {str(e)}")
|
873 |
+
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
|
874 |
+
|
875 |
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
876 |
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
877 |
if not asr_manager.model:
|