|
import argparse |
|
import io |
|
import os |
|
from time import time |
|
from typing import List |
|
import tempfile |
|
import uvicorn |
|
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse |
|
from PIL import Image |
|
from pydantic import BaseModel, field_validator |
|
from pydantic_settings import BaseSettings |
|
from slowapi import Limiter |
|
from slowapi.util import get_remote_address |
|
import torch |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, BitsAndBytesConfig, AutoModel, Gemma3ForConditionalGeneration |
|
from IndicTransToolkit import IndicProcessor |
|
import json |
|
import asyncio |
|
from contextlib import asynccontextmanager |
|
import soundfile as sf |
|
import numpy as np |
|
import requests |
|
from starlette.responses import StreamingResponse |
|
from logging_config import logger |
|
from tts_config import SPEED, ResponseFormat, config as tts_config |
|
import torchaudio |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda:0" |
|
logger.info("GPU will be used for inference") |
|
else: |
|
device = "cpu" |
|
logger.info("CPU will be used for inference") |
|
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32 |
|
|
|
|
|
cuda_available = torch.cuda.is_available() |
|
cuda_version = torch.version.cuda if cuda_available else None |
|
|
|
if torch.cuda.is_available(): |
|
device_idx = torch.cuda.current_device() |
|
capability = torch.cuda.get_device_capability(device_idx) |
|
compute_capability_float = float(f"{capability[0]}.{capability[1]}") |
|
print(f"CUDA version: {cuda_version}") |
|
print(f"CUDA Compute Capability: {compute_capability_float}") |
|
else: |
|
print("CUDA is not available on this system.") |
|
|
|
|
|
class Settings(BaseSettings): |
|
llm_model_name: str = "google/gemma-3-4b-it" |
|
max_tokens: int = 512 |
|
host: str = "0.0.0.0" |
|
port: int = 7860 |
|
chat_rate_limit: str = "100/minute" |
|
speech_rate_limit: str = "5/minute" |
|
|
|
@field_validator("chat_rate_limit", "speech_rate_limit") |
|
def validate_rate_limit(cls, v): |
|
if not v.count("/") == 1 or not v.split("/")[0].isdigit(): |
|
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')") |
|
return v |
|
|
|
class Config: |
|
env_file = ".env" |
|
|
|
settings = Settings() |
|
|
|
|
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
|
|
class LLMManager: |
|
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"): |
|
self.model_name = model_name |
|
self.device = torch.device(device) |
|
self.torch_dtype = torch.bfloat16 if self.device.type != "cpu" else torch.float32 |
|
self.model = None |
|
self.processor = None |
|
self.is_loaded = False |
|
logger.info(f"LLMManager initialized with model {model_name} on {self.device}") |
|
|
|
def load(self): |
|
if not self.is_loaded: |
|
try: |
|
self.model = Gemma3ForConditionalGeneration.from_pretrained( |
|
self.model_name, |
|
device_map="auto", |
|
quantization_config=quantization_config, |
|
torch_dtype=self.torch_dtype |
|
) |
|
self.model.eval() |
|
self.processor = AutoProcessor.from_pretrained(self.model_name) |
|
self.is_loaded = True |
|
logger.info(f"LLM {self.model_name} loaded on {self.device}") |
|
except Exception as e: |
|
logger.error(f"Failed to load LLM: {str(e)}") |
|
raise |
|
|
|
def unload(self): |
|
if self.is_loaded: |
|
del self.model |
|
del self.processor |
|
if self.device.type == "cuda": |
|
torch.cuda.empty_cache() |
|
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}") |
|
self.is_loaded = False |
|
logger.info(f"LLM {self.model_name} unloaded from {self.device}") |
|
|
|
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str: |
|
if not self.is_loaded: |
|
self.load() |
|
|
|
messages_vlm = [ |
|
{ |
|
"role": "system", |
|
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [{"type": "text", "text": prompt}] |
|
} |
|
] |
|
|
|
try: |
|
inputs_vlm = self.processor.apply_chat_template( |
|
messages_vlm, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device, dtype=torch.bfloat16) |
|
except Exception as e: |
|
logger.error(f"Error in tokenization: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}") |
|
|
|
input_len = inputs_vlm["input_ids"].shape[-1] |
|
|
|
with torch.inference_mode(): |
|
generation = self.model.generate( |
|
**inputs_vlm, |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
temperature=temperature |
|
) |
|
generation = generation[0][input_len:] |
|
|
|
response = self.processor.decode(generation, skip_special_tokens=True) |
|
logger.info(f"Generated response: {response}") |
|
return response |
|
|
|
async def vision_query(self, image: Image.Image, query: str) -> str: |
|
if not self.is_loaded: |
|
self.load() |
|
|
|
messages_vlm = [ |
|
{ |
|
"role": "system", |
|
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in maximum 1 sentence."}] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [] |
|
} |
|
] |
|
|
|
messages_vlm[1]["content"].append({"type": "text", "text": query}) |
|
if image and image.size[0] > 0 and image.size[1] > 0: |
|
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image}) |
|
logger.info(f"Received valid image for processing") |
|
else: |
|
logger.info("No valid image provided, processing text only") |
|
|
|
try: |
|
inputs_vlm = self.processor.apply_chat_template( |
|
messages_vlm, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device, dtype=torch.bfloat16) |
|
except Exception as e: |
|
logger.error(f"Error in apply_chat_template: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}") |
|
|
|
input_len = inputs_vlm["input_ids"].shape[-1] |
|
|
|
with torch.inference_mode(): |
|
generation = self.model.generate( |
|
**inputs_vlm, |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=0.7 |
|
) |
|
generation = generation[0][input_len:] |
|
|
|
decoded = self.processor.decode(generation, skip_special_tokens=True) |
|
logger.info(f"Vision query response: {decoded}") |
|
return decoded |
|
|
|
async def chat_v2(self, image: Image.Image, query: str) -> str: |
|
if not self.is_loaded: |
|
self.load() |
|
|
|
messages_vlm = [ |
|
{ |
|
"role": "system", |
|
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [] |
|
} |
|
] |
|
|
|
messages_vlm[1]["content"].append({"type": "text", "text": query}) |
|
if image and image.size[0] > 0 and image.size[1] > 0: |
|
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image}) |
|
logger.info(f"Received valid image for processing") |
|
else: |
|
logger.info("No valid image provided, processing text only") |
|
|
|
try: |
|
inputs_vlm = self.processor.apply_chat_template( |
|
messages_vlm, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device, dtype=torch.bfloat16) |
|
except Exception as e: |
|
logger.error(f"Error in apply_chat_template: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}") |
|
|
|
input_len = inputs_vlm["input_ids"].shape[-1] |
|
|
|
with torch.inference_mode(): |
|
generation = self.model.generate( |
|
**inputs_vlm, |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=0.7 |
|
) |
|
generation = generation[0][input_len:] |
|
|
|
decoded = self.processor.decode(generation, skip_special_tokens=True) |
|
logger.info(f"Chat_v2 response: {decoded}") |
|
return decoded |
|
|
|
|
|
class TTSManager: |
|
def __init__(self, device_type=device): |
|
self.device_type = device_type |
|
self.model = None |
|
self.repo_id = "ai4bharat/IndicF5" |
|
|
|
def load(self): |
|
if not self.model: |
|
logger.info("Loading TTS model IndicF5...") |
|
self.model = AutoModel.from_pretrained( |
|
self.repo_id, |
|
trust_remote_code=True |
|
) |
|
self.model = self.model.to(self.device_type) |
|
logger.info("TTS model IndicF5 loaded") |
|
|
|
def synthesize(self, text, ref_audio_path, ref_text): |
|
if not self.model: |
|
raise ValueError("TTS model not loaded") |
|
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text) |
|
|
|
|
|
EXAMPLES = [ |
|
{ |
|
"audio_name": "KAN_F (Happy)", |
|
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav", |
|
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ.", |
|
"synth_text": "ಚೆನ್ನೈನ ಶೇರ್ ಆಟೋ ಪ್ರಯಾಣಿಕರ ನಡುವೆ ಆಹಾರವನ್ನು ಹಂಚಿಕೊಂಡು ತಿನ್ನುವುದು ನನಗೆ ಮನಸ್ಸಿಗೆ ತುಂಬಾ ಒಳ್ಳೆಯದೆನಿಸುವ ವಿಷಯ." |
|
}, |
|
] |
|
|
|
|
|
class SynthesizeRequest(BaseModel): |
|
text: str |
|
ref_audio_name: str |
|
ref_text: str = None |
|
|
|
class KannadaSynthesizeRequest(BaseModel): |
|
text: str |
|
|
|
|
|
def load_audio_from_url(url: str): |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
audio_data, sample_rate = sf.read(io.BytesIO(response.content)) |
|
return sample_rate, audio_data |
|
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL.") |
|
|
|
def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str): |
|
ref_audio_url = None |
|
for example in EXAMPLES: |
|
if example["audio_name"] == ref_audio_name: |
|
ref_audio_url = example["audio_url"] |
|
if not ref_text: |
|
ref_text = example["ref_text"] |
|
break |
|
|
|
if not ref_audio_url: |
|
raise HTTPException(status_code=400, detail="Invalid reference audio name.") |
|
if not text.strip(): |
|
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.") |
|
if not ref_text or not ref_text.strip(): |
|
raise HTTPException(status_code=400, detail="Reference text cannot be empty.") |
|
|
|
sample_rate, audio_data = load_audio_from_url(ref_audio_url) |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: |
|
sf.write(temp_audio.name, audio_data, samplerate=sample_rate, format='WAV') |
|
temp_audio.flush() |
|
audio = tts_manager.synthesize(text, ref_audio_path=temp_audio.name, ref_text=ref_text) |
|
|
|
if audio.dtype == np.int16: |
|
audio = audio.astype(np.float32) / 32768.0 |
|
buffer = io.BytesIO() |
|
sf.write(buffer, audio, 24000, format='WAV') |
|
buffer.seek(0) |
|
return buffer |
|
|
|
|
|
SUPPORTED_LANGUAGES = { |
|
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva", |
|
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab", |
|
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml", |
|
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab", |
|
"kan_Knda", "ory_Orya", |
|
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", |
|
"por_Latn", "rus_Cyrl", "pol_Latn" |
|
} |
|
|
|
|
|
class TranslateManager: |
|
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True): |
|
self.device_type = device_type |
|
self.tokenizer = None |
|
self.model = None |
|
self.src_lang = src_lang |
|
self.tgt_lang = tgt_lang |
|
self.use_distilled = use_distilled |
|
|
|
def load(self): |
|
if not self.tokenizer or not self.model: |
|
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"): |
|
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-en-indic-1B" |
|
elif not self.src_lang.startswith("eng") and self.tgt_lang.startswith("eng"): |
|
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-indic-en-1B" |
|
elif not self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"): |
|
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if self.use_distilled else "ai4bharat/indictrans2-indic-indic-1B" |
|
else: |
|
raise ValueError("Invalid language combination") |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True |
|
) |
|
self.model = AutoModelForSeq2SeqLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2" |
|
) |
|
self.model = self.model.to(self.device_type) |
|
self.model = torch.compile(self.model, mode="reduce-overhead") |
|
logger.info(f"Translation model {model_name} loaded") |
|
|
|
class ModelManager: |
|
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False): |
|
self.models = {} |
|
self.device_type = device_type |
|
self.use_distilled = use_distilled |
|
self.is_lazy_loading = is_lazy_loading |
|
|
|
def load_model(self, src_lang, tgt_lang, key): |
|
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}") |
|
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled) |
|
translate_manager.load() |
|
self.models[key] = translate_manager |
|
logger.info(f"Loaded translation model for {key}") |
|
|
|
def get_model(self, src_lang, tgt_lang): |
|
key = self._get_model_key(src_lang, tgt_lang) |
|
if key not in self.models: |
|
if self.is_lazy_loading: |
|
self.load_model(src_lang, tgt_lang, key) |
|
else: |
|
raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.") |
|
return self.models.get(key) |
|
|
|
def _get_model_key(self, src_lang, tgt_lang): |
|
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"): |
|
return 'eng_indic' |
|
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"): |
|
return 'indic_eng' |
|
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"): |
|
return 'indic_indic' |
|
raise ValueError("Invalid language combination") |
|
|
|
|
|
class ASRModelManager: |
|
def __init__(self, device_type="cuda"): |
|
self.device_type = device_type |
|
self.model = None |
|
self.model_language = {"kannada": "kn"} |
|
|
|
def load(self): |
|
if not self.model: |
|
logger.info("Loading ASR model...") |
|
self.model = AutoModel.from_pretrained( |
|
"ai4bharat/indic-conformer-600m-multilingual", |
|
trust_remote_code=True |
|
) |
|
self.model = self.model.to(self.device_type) |
|
logger.info("ASR model loaded") |
|
|
|
|
|
llm_manager = LLMManager(settings.llm_model_name) |
|
model_manager = ModelManager() |
|
asr_manager = ASRModelManager() |
|
tts_manager = TTSManager() |
|
ip = IndicProcessor(inference=True) |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
prompt: str |
|
src_lang: str = "kan_Knda" |
|
tgt_lang: str = "kan_Knda" |
|
|
|
@field_validator("prompt") |
|
def prompt_must_be_valid(cls, v): |
|
if len(v) > 1000: |
|
raise ValueError("Prompt cannot exceed 1000 characters") |
|
return v.strip() |
|
|
|
@field_validator("src_lang", "tgt_lang") |
|
def validate_language(cls, v): |
|
if v not in SUPPORTED_LANGUAGES: |
|
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}") |
|
return v |
|
|
|
|
|
class ChatResponse(BaseModel): |
|
response: str |
|
|
|
class TranslationRequest(BaseModel): |
|
sentences: List[str] |
|
src_lang: str |
|
tgt_lang: str |
|
|
|
class TranscriptionResponse(BaseModel): |
|
text: str |
|
|
|
class TranslationResponse(BaseModel): |
|
translations: List[str] |
|
|
|
|
|
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager: |
|
return model_manager.get_model(src_lang, tgt_lang) |
|
|
|
|
|
translation_configs = [] |
|
|
|
@asynccontextmanager |
|
async def lifespan(app: FastAPI): |
|
def load_all_models(): |
|
try: |
|
|
|
logger.info("Loading LLM model...") |
|
llm_manager.load() |
|
logger.info("LLM model loaded successfully") |
|
|
|
|
|
logger.info("Loading TTS model...") |
|
tts_manager.load() |
|
logger.info("TTS model loaded successfully") |
|
|
|
|
|
logger.info("Loading ASR model...") |
|
asr_manager.load() |
|
logger.info("ASR model loaded successfully") |
|
|
|
|
|
translation_tasks = [ |
|
('eng_Latn', 'kan_Knda', 'eng_indic'), |
|
('kan_Knda', 'eng_Latn', 'indic_eng'), |
|
('kan_Knda', 'hin_Deva', 'indic_indic'), |
|
] |
|
|
|
for config in translation_configs: |
|
src_lang = config["src_lang"] |
|
tgt_lang = config["tgt_lang"] |
|
key = model_manager._get_model_key(src_lang, tgt_lang) |
|
translation_tasks.append((src_lang, tgt_lang, key)) |
|
|
|
for src_lang, tgt_lang, key in translation_tasks: |
|
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}...") |
|
model_manager.load_model(src_lang, tgt_lang, key) |
|
logger.info(f"Translation model for {key} loaded successfully") |
|
|
|
logger.info("All models loaded successfully") |
|
except Exception as e: |
|
logger.error(f"Error loading models: {str(e)}") |
|
raise |
|
|
|
logger.info("Starting sequential model loading...") |
|
load_all_models() |
|
yield |
|
llm_manager.unload() |
|
logger.info("Server shutdown complete") |
|
|
|
|
|
app = FastAPI( |
|
title="Dhwani API", |
|
description="AI Chat API supporting Indian languages", |
|
version="1.0.0", |
|
redirect_slashes=False, |
|
lifespan=lifespan |
|
) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=False, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
@app.middleware("http") |
|
async def add_request_timing(request: Request, call_next): |
|
start_time = time() |
|
response = await call_next(request) |
|
end_time = time() |
|
duration = end_time - start_time |
|
logger.info(f"Request to {request.url.path} took {duration:.3f} seconds") |
|
response.headers["X-Response-Time"] = f"{duration:.3f}" |
|
return response |
|
|
|
limiter = Limiter(key_func=get_remote_address) |
|
app.state.limiter = limiter |
|
|
|
|
|
@app.post("/audio/speech", response_class=StreamingResponse) |
|
async def synthesize_kannada(request: KannadaSynthesizeRequest): |
|
if not tts_manager.model: |
|
raise HTTPException(status_code=503, detail="TTS model not loaded") |
|
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)") |
|
if not request.text.strip(): |
|
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.") |
|
|
|
audio_buffer = synthesize_speech( |
|
tts_manager, |
|
text=request.text, |
|
ref_audio_name="KAN_F (Happy)", |
|
ref_text=kannada_example["ref_text"] |
|
) |
|
|
|
return StreamingResponse( |
|
audio_buffer, |
|
media_type="audio/wav", |
|
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"} |
|
) |
|
|
|
@app.post("/translate", response_model=TranslationResponse) |
|
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)): |
|
input_sentences = request.sentences |
|
src_lang = request.src_lang |
|
tgt_lang = request.tgt_lang |
|
|
|
if not input_sentences: |
|
raise HTTPException(status_code=400, detail="Input sentences are required") |
|
|
|
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang) |
|
inputs = translate_manager.tokenizer( |
|
batch, |
|
truncation=True, |
|
padding="longest", |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
).to(translate_manager.device_type) |
|
|
|
with torch.no_grad(): |
|
generated_tokens = translate_manager.model.generate( |
|
**inputs, |
|
use_cache=True, |
|
min_length=0, |
|
max_length=256, |
|
num_beams=5, |
|
num_return_sequences=1, |
|
) |
|
|
|
with translate_manager.tokenizer.as_target_tokenizer(): |
|
generated_tokens = translate_manager.tokenizer.batch_decode( |
|
generated_tokens.detach().cpu().tolist(), |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True, |
|
) |
|
|
|
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang) |
|
return TranslationResponse(translations=translations) |
|
|
|
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]: |
|
try: |
|
translate_manager = model_manager.get_model(src_lang, tgt_lang) |
|
except ValueError as e: |
|
logger.info(f"Model not preloaded: {str(e)}, loading now...") |
|
key = model_manager._get_model_key(src_lang, tgt_lang) |
|
model_manager.load_model(src_lang, tgt_lang, key) |
|
translate_manager = model_manager.get_model(src_lang, tgt_lang) |
|
|
|
if not translate_manager.model: |
|
translate_manager.load() |
|
|
|
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang) |
|
response = await translate(request, translate_manager) |
|
return response.translations |
|
|
|
@app.get("/v1/health") |
|
async def health_check(): |
|
return {"status": "healthy", "model": settings.llm_model_name} |
|
|
|
@app.get("/") |
|
async def home(): |
|
return RedirectResponse(url="/docs") |
|
|
|
@app.post("/v1/unload_all_models") |
|
async def unload_all_models(): |
|
try: |
|
logger.info("Starting to unload all models...") |
|
llm_manager.unload() |
|
logger.info("All models unloaded successfully") |
|
return {"status": "success", "message": "All models unloaded"} |
|
except Exception as e: |
|
logger.error(f"Error unloading models: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}") |
|
|
|
@app.post("/v1/load_all_models") |
|
async def load_all_models(): |
|
try: |
|
logger.info("Starting to load all models...") |
|
llm_manager.load() |
|
logger.info("All models loaded successfully") |
|
return {"status": "success", "message": "All models loaded"} |
|
except Exception as e: |
|
logger.error(f"Error loading models: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}") |
|
|
|
@app.post("/v1/translate", response_model=TranslationResponse) |
|
async def translate_endpoint(request: TranslationRequest): |
|
logger.info(f"Received translation request: {request.dict()}") |
|
try: |
|
translations = await perform_internal_translation( |
|
sentences=request.sentences, |
|
src_lang=request.src_lang, |
|
tgt_lang=request.tgt_lang |
|
) |
|
logger.info(f"Translation successful: {translations}") |
|
return TranslationResponse(translations=translations) |
|
except Exception as e: |
|
logger.error(f"Unexpected error during translation: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}") |
|
|
|
@app.post("/v1/chat", response_model=ChatResponse) |
|
@limiter.limit(settings.chat_rate_limit) |
|
async def chat(request: Request, chat_request: ChatRequest): |
|
if not chat_request.prompt: |
|
raise HTTPException(status_code=400, detail="Prompt cannot be empty") |
|
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}") |
|
|
|
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"} |
|
|
|
try: |
|
if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES: |
|
translated_prompt = await perform_internal_translation( |
|
sentences=[chat_request.prompt], |
|
src_lang=chat_request.src_lang, |
|
tgt_lang="eng_Latn" |
|
) |
|
prompt_to_process = translated_prompt[0] |
|
logger.info(f"Translated prompt to English: {prompt_to_process}") |
|
else: |
|
prompt_to_process = chat_request.prompt |
|
logger.info("Prompt in English or European language, no translation needed") |
|
|
|
response = await llm_manager.generate(prompt_to_process, settings.max_tokens) |
|
logger.info(f"Generated response: {response}") |
|
|
|
if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES: |
|
translated_response = await perform_internal_translation( |
|
sentences=[response], |
|
src_lang="eng_Latn", |
|
tgt_lang=chat_request.tgt_lang |
|
) |
|
final_response = translated_response[0] |
|
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}") |
|
else: |
|
final_response = response |
|
logger.info(f"Response in {chat_request.tgt_lang}, no translation needed") |
|
|
|
return ChatResponse(response=final_response) |
|
except Exception as e: |
|
logger.error(f"Error processing request: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") |
|
|
|
@app.post("/v1/visual_query/") |
|
async def visual_query( |
|
file: UploadFile = File(...), |
|
query: str = Body(...), |
|
src_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)), |
|
tgt_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)), |
|
): |
|
try: |
|
image = Image.open(file.file) |
|
if image.size == (0, 0): |
|
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid") |
|
|
|
if src_lang != "eng_Latn": |
|
translated_query = await perform_internal_translation( |
|
sentences=[query], |
|
src_lang=src_lang, |
|
tgt_lang="eng_Latn" |
|
) |
|
query_to_process = translated_query[0] |
|
logger.info(f"Translated query to English: {query_to_process}") |
|
else: |
|
query_to_process = query |
|
logger.info("Query already in English, no translation needed") |
|
|
|
answer = await llm_manager.vision_query(image, query_to_process) |
|
logger.info(f"Generated English answer: {answer}") |
|
|
|
if tgt_lang != "eng_Latn": |
|
translated_answer = await perform_internal_translation( |
|
sentences=[answer], |
|
src_lang="eng_Latn", |
|
tgt_lang=tgt_lang |
|
) |
|
final_answer = translated_answer[0] |
|
logger.info(f"Translated answer to {tgt_lang}: {final_answer}") |
|
else: |
|
final_answer = answer |
|
logger.info("Answer kept in English, no translation needed") |
|
|
|
return {"answer": final_answer} |
|
except Exception as e: |
|
logger.error(f"Error processing request: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") |
|
|
|
@app.post("/v1/chat_v2", response_model=ChatResponse) |
|
@limiter.limit(settings.chat_rate_limit) |
|
async def chat_v2( |
|
request: Request, |
|
prompt: str = Form(...), |
|
image: UploadFile = File(default=None), |
|
src_lang: str = Form("kan_Knda"), |
|
tgt_lang: str = Form("kan_Knda"), |
|
): |
|
if not prompt: |
|
raise HTTPException(status_code=400, detail="Prompt cannot be empty") |
|
if src_lang not in SUPPORTED_LANGUAGES or tgt_lang not in SUPPORTED_LANGUAGES: |
|
raise HTTPException(status_code=400, detail=f"Unsupported language code. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}") |
|
|
|
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}") |
|
|
|
try: |
|
if image: |
|
image_data = await image.read() |
|
if not image_data: |
|
raise HTTPException(status_code=400, detail="Uploaded image is empty") |
|
img = Image.open(io.BytesIO(image_data)) |
|
|
|
if src_lang != "eng_Latn": |
|
translated_prompt = await perform_internal_translation( |
|
sentences=[prompt], |
|
src_lang=src_lang, |
|
tgt_lang="eng_Latn" |
|
) |
|
prompt_to_process = translated_prompt[0] |
|
logger.info(f"Translated prompt to English: {prompt_to_process}") |
|
else: |
|
prompt_to_process = prompt |
|
logger.info("Prompt already in English, no translation needed") |
|
|
|
decoded = await llm_manager.chat_v2(img, prompt_to_process) |
|
logger.info(f"Generated English response: {decoded}") |
|
|
|
if tgt_lang != "eng_Latn": |
|
translated_response = await perform_internal_translation( |
|
sentences=[decoded], |
|
src_lang="eng_Latn", |
|
tgt_lang=tgt_lang |
|
) |
|
final_response = translated_response[0] |
|
logger.info(f"Translated response to {tgt_lang}: {final_response}") |
|
else: |
|
final_response = decoded |
|
logger.info("Response kept in English, no translation needed") |
|
else: |
|
if src_lang != "eng_Latn": |
|
translated_prompt = await perform_internal_translation( |
|
sentences=[prompt], |
|
src_lang=src_lang, |
|
tgt_lang="eng_Latn" |
|
) |
|
prompt_to_process = translated_prompt[0] |
|
logger.info(f"Translated prompt to English: {prompt_to_process}") |
|
else: |
|
prompt_to_process = prompt |
|
logger.info("Prompt already in English, no translation needed") |
|
|
|
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens) |
|
logger.info(f"Generated English response: {decoded}") |
|
|
|
if tgt_lang != "eng_Latn": |
|
translated_response = await perform_internal_translation( |
|
sentences=[decoded], |
|
src_lang="eng_Latn", |
|
tgt_lang=tgt_lang |
|
) |
|
final_response = translated_response[0] |
|
logger.info(f"Translated response to {tgt_lang}: {final_response}") |
|
else: |
|
final_response = decoded |
|
logger.info("Response kept in English, no translation needed") |
|
|
|
return ChatResponse(response=final_response) |
|
except Exception as e: |
|
logger.error(f"Error processing request: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") |
|
|
|
@app.post("/transcribe/", response_model=TranscriptionResponse) |
|
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))): |
|
if not asr_manager.model: |
|
raise HTTPException(status_code=503, detail="ASR model not loaded") |
|
try: |
|
wav, sr = torchaudio.load(file.file) |
|
wav = torch.mean(wav, dim=0, keepdim=True) |
|
target_sample_rate = 16000 |
|
if sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate) |
|
wav = resampler(wav) |
|
transcription_rnnt = asr_manager.model(wav, asr_manager.model_language[language], "rnnt") |
|
return TranscriptionResponse(text=transcription_rnnt) |
|
except Exception as e: |
|
logger.error(f"Error in transcription: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}") |
|
|
|
@app.post("/v1/speech_to_speech") |
|
async def speech_to_speech( |
|
request: Request, |
|
file: UploadFile = File(...), |
|
language: str = Query(..., enum=list(asr_manager.model_language.keys())), |
|
) -> StreamingResponse: |
|
if not tts_manager.model: |
|
raise HTTPException(status_code=503, detail="TTS model not loaded") |
|
transcription = await transcribe_audio(file, language) |
|
logger.info(f"Transcribed text: {transcription.text}") |
|
|
|
chat_request = ChatRequest( |
|
prompt=transcription.text, |
|
src_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"), |
|
tgt_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda") |
|
) |
|
processed_text = await chat(request, chat_request) |
|
logger.info(f"Processed text: {processed_text.response}") |
|
|
|
voice_request = KannadaSynthesizeRequest(text=processed_text.response) |
|
audio_response = await synthesize_kannada(voice_request) |
|
return audio_response |
|
|
|
LANGUAGE_TO_SCRIPT = { |
|
"kannada": "kan_Knda" |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run the FastAPI server.") |
|
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.") |
|
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.") |
|
parser.add_argument("--config", type=str, default="config_one", help="Configuration to use") |
|
args = parser.parse_args() |
|
|
|
def load_config(config_path="dhwani_config.json"): |
|
with open(config_path, "r") as f: |
|
return json.load(f) |
|
|
|
config_data = load_config() |
|
if args.config not in config_data["configs"]: |
|
raise ValueError(f"Invalid config: {args.config}. Available: {list(config_data['configs'].keys())}") |
|
|
|
selected_config = config_data["configs"][args.config] |
|
global_settings = config_data["global_settings"] |
|
|
|
settings.llm_model_name = selected_config["components"]["LLM"]["model"] |
|
settings.max_tokens = selected_config["components"]["LLM"]["max_tokens"] |
|
settings.host = global_settings["host"] |
|
settings.port = global_settings["port"] |
|
settings.chat_rate_limit = global_settings["chat_rate_limit"] |
|
settings.speech_rate_limit = global_settings["speech_rate_limit"] |
|
|
|
llm_manager = LLMManager(settings.llm_model_name) |
|
|
|
if selected_config["components"]["ASR"]: |
|
asr_model_name = selected_config["components"]["ASR"]["model"] |
|
asr_manager.model_language[selected_config["language"]] = selected_config["components"]["ASR"]["language_code"] |
|
|
|
if selected_config["components"]["Translation"]: |
|
translation_configs.extend(selected_config["components"]["Translation"]) |
|
|
|
host = args.host if args.host != settings.host else settings.host |
|
port = args.port if args.port != settings.port else settings.port |
|
|
|
uvicorn.run(app, host=host, port=port) |