Spaces:
Paused
Paused
File size: 23,703 Bytes
998f798 3e58bef 998f798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
import io
import math
from PIL import Image, ImageOps, ImageDraw
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionInpaintPipeline
from fastapi import FastAPI, Response
from fastapi.responses import FileResponse
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download, login
from safetensors.torch import load_file
from io import BytesIO
import os
import base64
from typing import List
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse
from PIL import Image, ImageDraw, ImageFilter
import io
import torch
import numpy as np
from diffusers import StableDiffusionInpaintPipeline
import cv2
# Initialize FastAPI app
app = FastAPI()
model_id_runway = "runwayml/stable-diffusion-inpainting"
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
pipe_runway = StableDiffusionInpaintPipeline.from_pretrained(model_id_runway)
pipe_runway.to(device)
except Exception as e:
raise RuntimeError(f"Failed to load model: {e}")
# Load the pre-trained InstructPix2Pix model for editing
model_id = "timbrooks/instruct-pix2pix"
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_id, torch_dtype=torch.float16, safety_checker=None
).to("cuda")
# Load the pre-trained Inpainting model
inpaint_model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
inpaint_model_id, torch_dtype=torch.float16, safety_checker=None
).to("cuda")
# Default configuration values
DEFAULT_STEPS = 50
DEFAULT_TEXT_CFG = 7.5
DEFAULT_IMAGE_CFG = 1.5
DEFAULT_SEED = 1371
HF_TOKEN = os.getenv("HF_TOKEN")
def load_model():
try:
# Login to Hugging Face if token is provided
if HF_TOKEN:
login(token=HF_TOKEN)
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
# Load model with explicit error handling
unet = UNet2DConditionModel.from_config(
base,
subfolder="unet"
).to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(
base,
unet=unet,
torch_dtype=torch.float16,
variant="fp16"
).to("cuda")
# Configure scheduler
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config,
timestep_spacing="trailing"
)
return pipe
except Exception as e:
raise Exception(f"Failed to load model: {str(e)}")
# Load model at startup with error handling
try:
pipe_generate = load_model()
except Exception as e:
print(f"Model initialization failed: {str(e)}")
raise
@app.get("/generate")
async def generate_image(prompt: str):
try:
# Generate image
image = pipe_generate(
prompt,
num_inference_steps=4,
guidance_scale=0
).images[0]
# Save image to buffer
buffer = BytesIO()
image.save(buffer, format="PNG")
buffer.seek(0)
return Response(content=buffer.getvalue(), media_type="image/png")
except Exception as e:
return {"error": str(e)}
@app.get("/health")
async def health_check():
return {"status": "healthy"}
def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
"""
Process the input image with the given instruction using InstructPix2Pix.
"""
# Resize image to fit model requirements
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if not instruction:
return input_image
# Set the random seed for reproducibility
generator = torch.manual_seed(seed)
# Generate the edited image
edited_image = pipe_edit(
instruction,
image=input_image,
guidance_scale=text_cfg_scale,
image_guidance_scale=image_cfg_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
return edited_image
@app.post("/edit-image/")
async def edit_image(
file: UploadFile = File(...),
instruction: str = Form(...),
steps: int = Form(default=DEFAULT_STEPS),
text_cfg_scale: float = Form(default=DEFAULT_TEXT_CFG),
image_cfg_scale: float = Form(default=DEFAULT_IMAGE_CFG),
seed: int = Form(default=DEFAULT_SEED)
):
"""
Endpoint to edit an image based on a text instruction.
"""
# Read and convert the uploaded image
image_data = await file.read()
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Process the image
edited_image = process_image(input_image, instruction, steps, text_cfg_scale, image_cfg_scale, seed)
# Convert the edited image to bytes
img_byte_arr = io.BytesIO()
edited_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
# Return the image as a streaming response
return StreamingResponse(img_byte_arr, media_type="image/png")
# New endpoint for inpainting
@app.post("/inpaint/")
async def inpaint_image(
file: UploadFile = File(...),
prompt: str = Form(...),
mask_coordinates: str = Form(...), # Format: "x1,y1,x2,y2" (top-left and bottom-right of the rectangle to inpaint)
steps: int = Form(default=DEFAULT_STEPS),
guidance_scale: float = Form(default=7.5),
seed: int = Form(default=DEFAULT_SEED)
):
"""
Endpoint to perform inpainting on an image.
- file: The input image to inpaint.
- prompt: The text prompt describing what to generate in the inpainted area.
- mask_coordinates: Coordinates of the rectangular area to inpaint (format: "x1,y1,x2,y2").
- steps: Number of inference steps.
- guidance_scale: Guidance scale for the inpainting process.
- seed: Random seed for reproducibility.
"""
try:
# Read and convert the uploaded image
image_data = await file.read()
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Resize image to fit model requirements (must be divisible by 8 for inpainting)
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 8) * 8 / min(width, height)
width = int((width * factor) // 8) * 8
height = int((height * factor) // 8) * 8
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
# Create a mask for inpainting
mask = Image.new("L", (width, height), 0) # Black image (0 = no inpainting)
draw = ImageDraw.Draw(mask)
# Parse the mask coordinates
try:
x1, y1, x2, y2 = map(int, mask_coordinates.split(","))
# Adjust coordinates based on resized image
x1 = int(x1 * factor)
y1 = int(y1 * factor)
x2 = int(x2 * factor)
y2 = int(y2 * factor)
except ValueError:
return {"error": "Invalid mask coordinates format. Use 'x1,y1,x2,y2'."}
# Draw a white rectangle on the mask (255 = area to inpaint)
draw.rectangle([x1, y1, x2, y2], fill=255)
# Set the random seed for reproducibility
generator = torch.manual_seed(seed)
# Perform inpainting
inpainted_image = pipe_inpaint(
prompt=prompt,
image=input_image,
mask_image=mask,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
# Convert the inpainted image to bytes
img_byte_arr = io.BytesIO()
inpainted_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
# Return the image as a streaming response
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
return {"error": str(e)}
@app.get("/")
async def root():
"""
Root endpoint for basic health check.
"""
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
# Helper functions
def prepare_guided_image(original_image: Image, reference_image: Image, mask_image: Image) -> Image:
original_array = np.array(original_image)
reference_array = np.array(reference_image)
mask_array = np.array(mask_image) / 255.0
mask_array = mask_array[:, :, np.newaxis]
blended_array = original_array * (1 - mask_array) + reference_array * mask_array
return Image.fromarray(blended_array.astype(np.uint8))
def soften_mask(mask_image: Image, softness: int = 5) -> Image:
from PIL import ImageFilter
return mask_image.filter(ImageFilter.GaussianBlur(radius=softness))
def generate_rectangular_mask(image_size: tuple, x1: int = 100, y1: int = 100, x2: int = 200, y2: int = 200) -> Image:
mask = Image.new("L", image_size, 0)
draw = ImageDraw.Draw(mask)
draw.rectangle([x1, y1, x2, y2], fill=255)
return mask
def segment_tank(tank_image: Image) -> tuple[Image, Image]:
tank_array = np.array(tank_image.convert("RGB"))
tank_array = cv2.cvtColor(tank_array, cv2.COLOR_RGB2BGR)
hsv = cv2.cvtColor(tank_array, cv2.COLOR_BGR2HSV)
lower_snow = np.array([0, 0, 180])
upper_snow = np.array([180, 50, 255])
snow_mask = cv2.inRange(hsv, lower_snow, upper_snow)
tank_mask = cv2.bitwise_not(snow_mask)
kernel = np.ones((5, 5), np.uint8)
tank_mask = cv2.erode(tank_mask, kernel, iterations=1)
tank_mask = cv2.dilate(tank_mask, kernel, iterations=1)
tank_mask_image = Image.fromarray(tank_mask, mode="L")
tank_array_rgb = np.array(tank_image.convert("RGB"))
mask_array = tank_mask / 255.0
mask_array = mask_array[:, :, np.newaxis]
segmented_tank = (tank_array_rgb * mask_array).astype(np.uint8)
alpha = tank_mask
segmented_tank_rgba = np.zeros((tank_image.height, tank_image.width, 4), dtype=np.uint8)
segmented_tank_rgba[:, :, :3] = segmented_tank
segmented_tank_rgba[:, :, 3] = alpha
segmented_tank_image = Image.fromarray(segmented_tank_rgba, mode="RGBA")
return segmented_tank_image, tank_mask_image
async def apply_camouflage_to_tank(tank_image: Image) -> Image:
segmented_tank, tank_mask = segment_tank(tank_image)
segmented_tank.save("segmented_tank.png")
tank_mask.save("tank_mask.png")
camouflaged_tank = pipe_runway(
prompt="Apply a grassy camouflage pattern with shades of green and brown to the tank, preserving its structure.",
image=segmented_tank.convert("RGB"),
mask_image=tank_mask,
strength=0.5,
guidance_scale=8.0,
num_inference_steps=50,
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
).images[0]
camouflaged_tank_rgba = np.zeros((camouflaged_tank.height, camouflaged_tank.width, 4), dtype=np.uint8)
camouflaged_tank_rgba[:, :, :3] = np.array(camouflaged_tank)
camouflaged_tank_rgba[:, :, 3] = np.array(tank_mask)
camouflaged_tank_image = Image.fromarray(camouflaged_tank_rgba, mode="RGBA")
camouflaged_tank_image.save("camouflaged_tank.png")
return camouflaged_tank_image
def fit_image_to_mask(original_image: Image, reference_image: Image, mask_x1: int, mask_y1: int, mask_x2: int, mask_y2: int) -> tuple:
mask_width = mask_x2 - mask_x1
mask_height = mask_y2 - mask_y1
if mask_width <= 0 or mask_height <= 0:
raise ValueError("Mask dimensions must be positive")
ref_width, ref_height = reference_image.size
aspect_ratio = ref_width / ref_height
if mask_width / mask_height > aspect_ratio:
new_height = mask_height
new_width = int(new_height * aspect_ratio)
else:
new_width = mask_width
new_height = int(new_width / aspect_ratio)
reference_image_resized = reference_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
guided_image = original_image.copy().convert("RGB")
paste_x = mask_x1 + (mask_width - new_width) // 2
paste_y = mask_y1 + (mask_height - new_height) // 2
guided_image.paste(reference_image_resized, (paste_x, paste_y), reference_image_resized)
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
return guided_image, mask_image
# Endpoints
@app.post("/inpaint/")
async def inpaint_image(
image: UploadFile = File(...),
mask: UploadFile = File(...),
prompt: str = "Fill the masked area with appropriate content."
):
try:
image_bytes = await image.read()
mask_bytes = await mask.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
if original_image.size != mask_image.size:
raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
result = pipe_runway(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=inpainted_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during inpainting: {e}")
@app.post("/inpaint-with-reference/")
async def inpaint_with_reference(
image: UploadFile = File(...),
reference_image: UploadFile = File(...),
prompt: str = "Integrate the reference content naturally into the masked area, matching style and lighting.",
mask_x1: int = 100,
mask_y1: int = 100,
mask_x2: int = 200,
mask_y2: int = 200
):
try:
image_bytes = await image.read()
reference_bytes = await reference_image.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
if original_image.size != reference_image.size:
reference_image = reference_image.resize(original_image.size, Image.Resampling.LANCZOS)
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
softened_mask = soften_mask(mask_image, softness=5)
guided_image = prepare_guided_image(original_image, reference_image, softened_mask)
result = pipe_runway(
prompt=prompt,
image=guided_image,
mask_image=softened_mask,
strength=0.75,
guidance_scale=7.5
).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=natural_inpaint_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during natural inpainting: {e}")
@app.post("/fit-image-to-mask/")
async def fit_image_to_mask_endpoint(
image: UploadFile = File(...),
reference_image: UploadFile = File(...),
mask_x1: int = 200,
mask_y1: int = 200,
mask_x2: int = 500,
mask_y2: int = 500
):
try:
image_bytes = await image.read()
reference_bytes = await reference_image.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
camouflaged_tank = await apply_camouflage_to_tank(reference_image)
guided_image, mask_image = fit_image_to_mask(original_image, camouflaged_tank, mask_x1, mask_y1, mask_x2, mask_y2)
guided_image.save("guided_image_before_blending.png")
softened_mask = soften_mask(mask_image, softness=2)
result = pipe_runway(
prompt="Blend the camouflaged tank into the grassy field with trees, ensuring a non-snowy environment, matching the style, lighting, and surroundings.",
image=guided_image,
mask_image=softened_mask,
strength=0.2,
guidance_scale=7.5,
num_inference_steps=50,
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=fitted_image.png"}
)
except ValueError as ve:
raise HTTPException(status_code=400, detail=f"ValueError in processing: {str(ve)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during fitting and inpainting: {str(e)}")
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
import io
# Set up model and device
model_id_segment = "IDEA-Research/grounding-dino-base"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load processor and model at startup
processor_segment = AutoProcessor.from_pretrained(model_id_segment)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id_segment).to(device)
# Default text query (can be overridden via endpoint parameters)
DEFAULT_TEXT_QUERY = "a tank." # Adjust based on your use case
def process_image(image: Image.Image, text_query: str = DEFAULT_TEXT_QUERY):
"""Process the image with Grounding DINO and return detection results."""
# Prepare inputs for the model
inputs = processor_segment(images=image, text=text_query, return_tensors="pt").to(device)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor_segment.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
threshold=0.4,
text_threshold=0.3,
target_sizes=[image.size[::-1]] # [width, height]
)
return results
def draw_detections(image: Image.Image, results: list) -> Image.Image:
"""Draw bounding boxes and labels on the image."""
output_image = image.copy()
draw = ImageDraw.Draw(output_image)
# Try to load a font, fall back to default
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
font = ImageFont.load_default()
# Colors for different objects
colors = {"a tank": "red"} # Add more as needed, e.g., {"a cat": "red", "a remote control": "blue"}
# Draw bounding boxes and labels
for detection in results:
boxes = detection["boxes"]
labels = detection["labels"]
scores = detection["scores"]
for box, label, score in zip(boxes, labels, scores):
x_min, y_min, x_max, y_max = box.tolist()
# Draw rectangle
draw.rectangle(
[(x_min, y_min), (x_max, y_max)],
outline=colors.get(label, "green"),
width=2
)
# Draw label with score
label_text = f"{label} {score:.2f}"
bbox = draw.textbbox((x_min, y_min - 20), label_text, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
# Draw background rectangle for text
draw.rectangle(
[(x_min, y_min - text_height - 5), (x_min + text_width, y_min)],
fill=colors.get(label, "green")
)
# Draw text
draw.text(
(x_min, y_min - text_height - 5),
label_text,
fill="white",
font=font
)
return output_image
@app.post("/detect-image/")
async def detect_image(
file: UploadFile = File(..., description="Image file to process"),
text_query: str = DEFAULT_TEXT_QUERY
):
"""
Endpoint to detect objects in an image and return the annotated image.
Args:
file: Uploaded image file.
text_query: Text query for objects to detect (e.g., "a tank.").
Returns:
StreamingResponse with the annotated image.
"""
try:
# Read and convert the uploaded image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Process the image
results = process_image(image, text_query)
# Draw detections on the image
output_image = draw_detections(image, results)
# Convert to bytes for response
img_byte_arr = io.BytesIO()
output_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(
img_byte_arr,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=detected_objects.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
@app.post("/detect-json/")
async def detect_json(
file: UploadFile = File(..., description="Image file to process"),
text_query: str = DEFAULT_TEXT_QUERY
):
"""
Endpoint to detect objects in an image and return bounding box information as JSON.
Args:
file: Uploaded image file.
text_query: Text query for objects to detect (e.g., "a tank.").
Returns:
JSONResponse with bounding box coordinates, labels, and scores.
"""
try:
# Read and convert the uploaded image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Process the image
results = process_image(image, text_query)
# Format results as JSON-compatible data
detections = []
for detection in results:
boxes = detection["boxes"]
labels = detection["labels"]
scores = detection["scores"]
for box, label, score in zip(boxes, labels, scores):
x_min, y_min, x_max, y_max = box.tolist()
detections.append({
"label": label,
"score": float(score), # Convert tensor to float
"box": {
"x_min": x_min,
"y_min": y_min,
"x_max": x_max,
"y_max": y_max
}
})
return JSONResponse(content={"detections": detections})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |