ghost-vision / merged_code.py
sachin
auto-segmt
3e58bef
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
import io
import math
from PIL import Image, ImageOps, ImageDraw
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionInpaintPipeline
from fastapi import FastAPI, Response
from fastapi.responses import FileResponse
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download, login
from safetensors.torch import load_file
from io import BytesIO
import os
import base64
from typing import List
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse
from PIL import Image, ImageDraw, ImageFilter
import io
import torch
import numpy as np
from diffusers import StableDiffusionInpaintPipeline
import cv2
# Initialize FastAPI app
app = FastAPI()
model_id_runway = "runwayml/stable-diffusion-inpainting"
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
pipe_runway = StableDiffusionInpaintPipeline.from_pretrained(model_id_runway)
pipe_runway.to(device)
except Exception as e:
raise RuntimeError(f"Failed to load model: {e}")
# Load the pre-trained InstructPix2Pix model for editing
model_id = "timbrooks/instruct-pix2pix"
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_id, torch_dtype=torch.float16, safety_checker=None
).to("cuda")
# Load the pre-trained Inpainting model
inpaint_model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
inpaint_model_id, torch_dtype=torch.float16, safety_checker=None
).to("cuda")
# Default configuration values
DEFAULT_STEPS = 50
DEFAULT_TEXT_CFG = 7.5
DEFAULT_IMAGE_CFG = 1.5
DEFAULT_SEED = 1371
HF_TOKEN = os.getenv("HF_TOKEN")
def load_model():
try:
# Login to Hugging Face if token is provided
if HF_TOKEN:
login(token=HF_TOKEN)
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
# Load model with explicit error handling
unet = UNet2DConditionModel.from_config(
base,
subfolder="unet"
).to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(
base,
unet=unet,
torch_dtype=torch.float16,
variant="fp16"
).to("cuda")
# Configure scheduler
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config,
timestep_spacing="trailing"
)
return pipe
except Exception as e:
raise Exception(f"Failed to load model: {str(e)}")
# Load model at startup with error handling
try:
pipe_generate = load_model()
except Exception as e:
print(f"Model initialization failed: {str(e)}")
raise
@app.get("/generate")
async def generate_image(prompt: str):
try:
# Generate image
image = pipe_generate(
prompt,
num_inference_steps=4,
guidance_scale=0
).images[0]
# Save image to buffer
buffer = BytesIO()
image.save(buffer, format="PNG")
buffer.seek(0)
return Response(content=buffer.getvalue(), media_type="image/png")
except Exception as e:
return {"error": str(e)}
@app.get("/health")
async def health_check():
return {"status": "healthy"}
def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
"""
Process the input image with the given instruction using InstructPix2Pix.
"""
# Resize image to fit model requirements
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if not instruction:
return input_image
# Set the random seed for reproducibility
generator = torch.manual_seed(seed)
# Generate the edited image
edited_image = pipe_edit(
instruction,
image=input_image,
guidance_scale=text_cfg_scale,
image_guidance_scale=image_cfg_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
return edited_image
@app.post("/edit-image/")
async def edit_image(
file: UploadFile = File(...),
instruction: str = Form(...),
steps: int = Form(default=DEFAULT_STEPS),
text_cfg_scale: float = Form(default=DEFAULT_TEXT_CFG),
image_cfg_scale: float = Form(default=DEFAULT_IMAGE_CFG),
seed: int = Form(default=DEFAULT_SEED)
):
"""
Endpoint to edit an image based on a text instruction.
"""
# Read and convert the uploaded image
image_data = await file.read()
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Process the image
edited_image = process_image(input_image, instruction, steps, text_cfg_scale, image_cfg_scale, seed)
# Convert the edited image to bytes
img_byte_arr = io.BytesIO()
edited_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
# Return the image as a streaming response
return StreamingResponse(img_byte_arr, media_type="image/png")
# New endpoint for inpainting
@app.post("/inpaint/")
async def inpaint_image(
file: UploadFile = File(...),
prompt: str = Form(...),
mask_coordinates: str = Form(...), # Format: "x1,y1,x2,y2" (top-left and bottom-right of the rectangle to inpaint)
steps: int = Form(default=DEFAULT_STEPS),
guidance_scale: float = Form(default=7.5),
seed: int = Form(default=DEFAULT_SEED)
):
"""
Endpoint to perform inpainting on an image.
- file: The input image to inpaint.
- prompt: The text prompt describing what to generate in the inpainted area.
- mask_coordinates: Coordinates of the rectangular area to inpaint (format: "x1,y1,x2,y2").
- steps: Number of inference steps.
- guidance_scale: Guidance scale for the inpainting process.
- seed: Random seed for reproducibility.
"""
try:
# Read and convert the uploaded image
image_data = await file.read()
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Resize image to fit model requirements (must be divisible by 8 for inpainting)
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 8) * 8 / min(width, height)
width = int((width * factor) // 8) * 8
height = int((height * factor) // 8) * 8
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
# Create a mask for inpainting
mask = Image.new("L", (width, height), 0) # Black image (0 = no inpainting)
draw = ImageDraw.Draw(mask)
# Parse the mask coordinates
try:
x1, y1, x2, y2 = map(int, mask_coordinates.split(","))
# Adjust coordinates based on resized image
x1 = int(x1 * factor)
y1 = int(y1 * factor)
x2 = int(x2 * factor)
y2 = int(y2 * factor)
except ValueError:
return {"error": "Invalid mask coordinates format. Use 'x1,y1,x2,y2'."}
# Draw a white rectangle on the mask (255 = area to inpaint)
draw.rectangle([x1, y1, x2, y2], fill=255)
# Set the random seed for reproducibility
generator = torch.manual_seed(seed)
# Perform inpainting
inpainted_image = pipe_inpaint(
prompt=prompt,
image=input_image,
mask_image=mask,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
# Convert the inpainted image to bytes
img_byte_arr = io.BytesIO()
inpainted_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
# Return the image as a streaming response
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
return {"error": str(e)}
@app.get("/")
async def root():
"""
Root endpoint for basic health check.
"""
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
# Helper functions
def prepare_guided_image(original_image: Image, reference_image: Image, mask_image: Image) -> Image:
original_array = np.array(original_image)
reference_array = np.array(reference_image)
mask_array = np.array(mask_image) / 255.0
mask_array = mask_array[:, :, np.newaxis]
blended_array = original_array * (1 - mask_array) + reference_array * mask_array
return Image.fromarray(blended_array.astype(np.uint8))
def soften_mask(mask_image: Image, softness: int = 5) -> Image:
from PIL import ImageFilter
return mask_image.filter(ImageFilter.GaussianBlur(radius=softness))
def generate_rectangular_mask(image_size: tuple, x1: int = 100, y1: int = 100, x2: int = 200, y2: int = 200) -> Image:
mask = Image.new("L", image_size, 0)
draw = ImageDraw.Draw(mask)
draw.rectangle([x1, y1, x2, y2], fill=255)
return mask
def segment_tank(tank_image: Image) -> tuple[Image, Image]:
tank_array = np.array(tank_image.convert("RGB"))
tank_array = cv2.cvtColor(tank_array, cv2.COLOR_RGB2BGR)
hsv = cv2.cvtColor(tank_array, cv2.COLOR_BGR2HSV)
lower_snow = np.array([0, 0, 180])
upper_snow = np.array([180, 50, 255])
snow_mask = cv2.inRange(hsv, lower_snow, upper_snow)
tank_mask = cv2.bitwise_not(snow_mask)
kernel = np.ones((5, 5), np.uint8)
tank_mask = cv2.erode(tank_mask, kernel, iterations=1)
tank_mask = cv2.dilate(tank_mask, kernel, iterations=1)
tank_mask_image = Image.fromarray(tank_mask, mode="L")
tank_array_rgb = np.array(tank_image.convert("RGB"))
mask_array = tank_mask / 255.0
mask_array = mask_array[:, :, np.newaxis]
segmented_tank = (tank_array_rgb * mask_array).astype(np.uint8)
alpha = tank_mask
segmented_tank_rgba = np.zeros((tank_image.height, tank_image.width, 4), dtype=np.uint8)
segmented_tank_rgba[:, :, :3] = segmented_tank
segmented_tank_rgba[:, :, 3] = alpha
segmented_tank_image = Image.fromarray(segmented_tank_rgba, mode="RGBA")
return segmented_tank_image, tank_mask_image
async def apply_camouflage_to_tank(tank_image: Image) -> Image:
segmented_tank, tank_mask = segment_tank(tank_image)
segmented_tank.save("segmented_tank.png")
tank_mask.save("tank_mask.png")
camouflaged_tank = pipe_runway(
prompt="Apply a grassy camouflage pattern with shades of green and brown to the tank, preserving its structure.",
image=segmented_tank.convert("RGB"),
mask_image=tank_mask,
strength=0.5,
guidance_scale=8.0,
num_inference_steps=50,
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
).images[0]
camouflaged_tank_rgba = np.zeros((camouflaged_tank.height, camouflaged_tank.width, 4), dtype=np.uint8)
camouflaged_tank_rgba[:, :, :3] = np.array(camouflaged_tank)
camouflaged_tank_rgba[:, :, 3] = np.array(tank_mask)
camouflaged_tank_image = Image.fromarray(camouflaged_tank_rgba, mode="RGBA")
camouflaged_tank_image.save("camouflaged_tank.png")
return camouflaged_tank_image
def fit_image_to_mask(original_image: Image, reference_image: Image, mask_x1: int, mask_y1: int, mask_x2: int, mask_y2: int) -> tuple:
mask_width = mask_x2 - mask_x1
mask_height = mask_y2 - mask_y1
if mask_width <= 0 or mask_height <= 0:
raise ValueError("Mask dimensions must be positive")
ref_width, ref_height = reference_image.size
aspect_ratio = ref_width / ref_height
if mask_width / mask_height > aspect_ratio:
new_height = mask_height
new_width = int(new_height * aspect_ratio)
else:
new_width = mask_width
new_height = int(new_width / aspect_ratio)
reference_image_resized = reference_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
guided_image = original_image.copy().convert("RGB")
paste_x = mask_x1 + (mask_width - new_width) // 2
paste_y = mask_y1 + (mask_height - new_height) // 2
guided_image.paste(reference_image_resized, (paste_x, paste_y), reference_image_resized)
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
return guided_image, mask_image
# Endpoints
@app.post("/inpaint/")
async def inpaint_image(
image: UploadFile = File(...),
mask: UploadFile = File(...),
prompt: str = "Fill the masked area with appropriate content."
):
try:
image_bytes = await image.read()
mask_bytes = await mask.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
if original_image.size != mask_image.size:
raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
result = pipe_runway(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=inpainted_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during inpainting: {e}")
@app.post("/inpaint-with-reference/")
async def inpaint_with_reference(
image: UploadFile = File(...),
reference_image: UploadFile = File(...),
prompt: str = "Integrate the reference content naturally into the masked area, matching style and lighting.",
mask_x1: int = 100,
mask_y1: int = 100,
mask_x2: int = 200,
mask_y2: int = 200
):
try:
image_bytes = await image.read()
reference_bytes = await reference_image.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
if original_image.size != reference_image.size:
reference_image = reference_image.resize(original_image.size, Image.Resampling.LANCZOS)
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
softened_mask = soften_mask(mask_image, softness=5)
guided_image = prepare_guided_image(original_image, reference_image, softened_mask)
result = pipe_runway(
prompt=prompt,
image=guided_image,
mask_image=softened_mask,
strength=0.75,
guidance_scale=7.5
).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=natural_inpaint_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during natural inpainting: {e}")
@app.post("/fit-image-to-mask/")
async def fit_image_to_mask_endpoint(
image: UploadFile = File(...),
reference_image: UploadFile = File(...),
mask_x1: int = 200,
mask_y1: int = 200,
mask_x2: int = 500,
mask_y2: int = 500
):
try:
image_bytes = await image.read()
reference_bytes = await reference_image.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
camouflaged_tank = await apply_camouflage_to_tank(reference_image)
guided_image, mask_image = fit_image_to_mask(original_image, camouflaged_tank, mask_x1, mask_y1, mask_x2, mask_y2)
guided_image.save("guided_image_before_blending.png")
softened_mask = soften_mask(mask_image, softness=2)
result = pipe_runway(
prompt="Blend the camouflaged tank into the grassy field with trees, ensuring a non-snowy environment, matching the style, lighting, and surroundings.",
image=guided_image,
mask_image=softened_mask,
strength=0.2,
guidance_scale=7.5,
num_inference_steps=50,
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=fitted_image.png"}
)
except ValueError as ve:
raise HTTPException(status_code=400, detail=f"ValueError in processing: {str(ve)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during fitting and inpainting: {str(e)}")
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
import io
# Set up model and device
model_id_segment = "IDEA-Research/grounding-dino-base"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load processor and model at startup
processor_segment = AutoProcessor.from_pretrained(model_id_segment)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id_segment).to(device)
# Default text query (can be overridden via endpoint parameters)
DEFAULT_TEXT_QUERY = "a tank." # Adjust based on your use case
def process_image(image: Image.Image, text_query: str = DEFAULT_TEXT_QUERY):
"""Process the image with Grounding DINO and return detection results."""
# Prepare inputs for the model
inputs = processor_segment(images=image, text=text_query, return_tensors="pt").to(device)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor_segment.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
threshold=0.4,
text_threshold=0.3,
target_sizes=[image.size[::-1]] # [width, height]
)
return results
def draw_detections(image: Image.Image, results: list) -> Image.Image:
"""Draw bounding boxes and labels on the image."""
output_image = image.copy()
draw = ImageDraw.Draw(output_image)
# Try to load a font, fall back to default
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
font = ImageFont.load_default()
# Colors for different objects
colors = {"a tank": "red"} # Add more as needed, e.g., {"a cat": "red", "a remote control": "blue"}
# Draw bounding boxes and labels
for detection in results:
boxes = detection["boxes"]
labels = detection["labels"]
scores = detection["scores"]
for box, label, score in zip(boxes, labels, scores):
x_min, y_min, x_max, y_max = box.tolist()
# Draw rectangle
draw.rectangle(
[(x_min, y_min), (x_max, y_max)],
outline=colors.get(label, "green"),
width=2
)
# Draw label with score
label_text = f"{label} {score:.2f}"
bbox = draw.textbbox((x_min, y_min - 20), label_text, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
# Draw background rectangle for text
draw.rectangle(
[(x_min, y_min - text_height - 5), (x_min + text_width, y_min)],
fill=colors.get(label, "green")
)
# Draw text
draw.text(
(x_min, y_min - text_height - 5),
label_text,
fill="white",
font=font
)
return output_image
@app.post("/detect-image/")
async def detect_image(
file: UploadFile = File(..., description="Image file to process"),
text_query: str = DEFAULT_TEXT_QUERY
):
"""
Endpoint to detect objects in an image and return the annotated image.
Args:
file: Uploaded image file.
text_query: Text query for objects to detect (e.g., "a tank.").
Returns:
StreamingResponse with the annotated image.
"""
try:
# Read and convert the uploaded image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Process the image
results = process_image(image, text_query)
# Draw detections on the image
output_image = draw_detections(image, results)
# Convert to bytes for response
img_byte_arr = io.BytesIO()
output_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(
img_byte_arr,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=detected_objects.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
@app.post("/detect-json/")
async def detect_json(
file: UploadFile = File(..., description="Image file to process"),
text_query: str = DEFAULT_TEXT_QUERY
):
"""
Endpoint to detect objects in an image and return bounding box information as JSON.
Args:
file: Uploaded image file.
text_query: Text query for objects to detect (e.g., "a tank.").
Returns:
JSONResponse with bounding box coordinates, labels, and scores.
"""
try:
# Read and convert the uploaded image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
# Process the image
results = process_image(image, text_query)
# Format results as JSON-compatible data
detections = []
for detection in results:
boxes = detection["boxes"]
labels = detection["labels"]
scores = detection["scores"]
for box, label, score in zip(boxes, labels, scores):
x_min, y_min, x_max, y_max = box.tolist()
detections.append({
"label": label,
"score": float(score), # Convert tensor to float
"box": {
"x_min": x_min,
"y_min": y_min,
"x_max": x_max,
"y_max": y_max
}
})
return JSONResponse(content={"detections": detections})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)