sachin commited on
Commit
be6ce26
·
1 Parent(s): e546f76
Files changed (2) hide show
  1. Dockerfile +1 -1
  2. runway.py +74 -0
Dockerfile CHANGED
@@ -35,4 +35,4 @@ USER appuser
35
  EXPOSE 7860
36
 
37
  # Run the server
38
- CMD ["python", "/app/intruct.py"]
 
35
  EXPOSE 7860
36
 
37
  # Run the server
38
+ CMD ["python", "/app/runway.py"]
runway.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, HTTPException
2
+ from fastapi.responses import JSONResponse
3
+ from PIL import Image
4
+ import io
5
+ import torch
6
+ from diffusers import StableDiffusionInpaintPipeline
7
+
8
+ # Initialize FastAPI app
9
+ app = FastAPI()
10
+
11
+ # Load the pre-trained inpainting model (Stable Diffusion)
12
+ model_id = "runwayml/stable-diffusion-inpainting"
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+
15
+ try:
16
+ pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id)
17
+ pipe.to(device)
18
+ except Exception as e:
19
+ raise RuntimeError(f"Failed to load model: {e}")
20
+
21
+ @app.get("/")
22
+ def read_root():
23
+ return {"message": "Welcome to the Image Inpainting API!"}
24
+
25
+ @app.post("/inpaint/")
26
+ async def inpaint_image(
27
+ image: UploadFile = File(...),
28
+ mask: UploadFile = File(...),
29
+ prompt: str = "Fill the masked area with appropriate content."
30
+ ):
31
+ """
32
+ Endpoint for image inpainting.
33
+ - `image`: Original image file (PNG/JPG).
34
+ - `mask`: Mask file indicating areas to inpaint (black for masked areas, white for unmasked).
35
+ - `prompt`: Text prompt describing the desired output.
36
+ """
37
+ try:
38
+ # Load the uploaded image and mask
39
+ image_bytes = await image.read()
40
+ mask_bytes = await mask.read()
41
+
42
+ original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
43
+ mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
44
+
45
+ # Ensure dimensions match between image and mask
46
+ if original_image.size != mask_image.size:
47
+ raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
48
+
49
+ # Perform inpainting using the pipeline
50
+ result = pipe(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
51
+
52
+ # Convert result to bytes for response
53
+ result_bytes = io.BytesIO()
54
+ result.save(result_bytes, format="PNG")
55
+ result_bytes.seek(0)
56
+
57
+ return JSONResponse(content={"message": "Inpainting successful!"}, media_type="image/png")
58
+
59
+ except Exception as e:
60
+ raise HTTPException(status_code=500, detail=f"Error during inpainting: {e}")
61
+
62
+
63
+
64
+
65
+ @app.get("/")
66
+ async def root():
67
+ """
68
+ Root endpoint for basic health check.
69
+ """
70
+ return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
71
+
72
+ if __name__ == "__main__":
73
+ import uvicorn
74
+ uvicorn.run(app, host="0.0.0.0", port=7860)