Lab4 / app.py
slliac's picture
Create app.py
2f34ae4 verified
import streamlit as st
from transformers import pipeline
from PIL import Image
import requests
from io import BytesIO
import logging
import torch
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class AgeClassifier:
def __init__(self):
try:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.pipe = pipeline("image-classification", model="nateraw/vit-age-classifier", device=self.device)
logger.info(f"Model loaded successfully on {self.device}")
except Exception as e:
logger.error(f"Failed to initialize pipeline: {e}")
raise
def classify_image(self, image):
try:
return self.pipe(image)
except Exception as e:
logger.error(f"Classification failed: {e}")
return None
@staticmethod
def format_results(results):
if not results:
return "No valid results"
return results
def load_image_from_url(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
return image
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
def main():
st.set_page_config(
page_title="Age Classification App",
page_icon="πŸ‘€",
layout="wide"
)
st.title("Age Classification App πŸ‘€")
st.write("Upload an image or provide a URL to classify the age range of people in the image.")
# Initialize the classifier
@st.cache_resource
def get_classifier():
return AgeClassifier()
classifier = get_classifier()
# Create two columns for input methods
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
with col2:
st.subheader("Image URL")
image_url = st.text_input("Enter image URL")
# Process the image
image = None
if uploaded_file is not None:
image = Image.open(uploaded_file)
elif image_url:
image = load_image_from_url(image_url)
if image:
# Display the image
st.image(image, caption="Input Image", use_column_width=True)
# Add a classify button
if st.button("Classify Age"):
with st.spinner("Classifying..."):
results = classifier.classify_image(image)
if results:
# Create a bar chart
st.subheader("Classification Results")
# Convert results to format suitable for bar chart
labels = [r['label'] for r in results]
scores = [r['score'] * 100 for r in results]
# Display most likely age range
most_likely = max(results, key=lambda x: x['score'])
st.success(f"Most likely age range: {most_likely['label']} ({most_likely['score']*100:.1f}%)")
# Create bar chart
chart_data = {
'Age Range': labels,
'Confidence (%)': scores
}
st.bar_chart(chart_data, x='Age Range', y='Confidence (%)')
# Display detailed results in an expander
with st.expander("See detailed results"):
st.write("Confidence scores for all age ranges:")
for result in results:
st.write(f"{result['label']}: {result['score']*100:.1f}%")
else:
st.error("Could not classify the image. Please try another image.")
# Add information about the model
with st.sidebar:
st.header("About")
st.write("""
This app uses the ViT (Vision Transformer) model trained for age classification.
The model classifies images into the following age ranges:
- 0-2 years
- 3-9 years
- 10-19 years
- 20-29 years
- 30-39 years
- 40-49 years
- 50-59 years
- 60-69 years
- 70+ years
""")
st.write("Model: nateraw/vit-age-classifier")
st.write(f"Running on: {classifier.device}")
if __name__ == "__main__":
main()