File size: 4,675 Bytes
a1553b6
 
 
 
f4babe0
c555988
3772beb
a1553b6
 
 
 
812f35c
a1553b6
 
3772beb
 
 
 
 
 
 
 
 
 
 
 
 
 
7bcaf56
c555988
75d01f7
 
 
 
e2a532c
34c126d
 
 
cfe1559
ff41721
8f95526
c555988
d4ce12c
c555988
a1553b6
 
 
 
812f35c
 
a1553b6
812f35c
a1553b6
 
 
 
 
 
 
 
 
3772beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1553b6
 
 
f614a18
a1553b6
 
 
 
9c7e31f
468bb0b
a1553b6
 
 
468bb0b
07f352f
9c7e31f
 
a1553b6
 
 
 
f614a18
a1553b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c1258
a1553b6
 
 
927fb69
f614a18
927fb69
f614a18
a1553b6
 
425542b
a1553b6
550147c
a1553b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import spaces
import gradio as gr
import time
import torch
import os
import json
import subprocess

from diffusers import (
    DDPMScheduler,
    AutoPipelineForText2Image,
    AutoencoderKL,
)

def runcmd(cmd, verbose = False, *args, **kwargs):

    process = subprocess.Popen(
        cmd,
        stdout = subprocess.PIPE,
        stderr = subprocess.PIPE,
        text = True,
        shell = True
    )
    std_out, std_err = process.communicate()
    if verbose:
        print(std_out.strip(), std_err)
    pass

os.system("python3 -m pip --no-cache-dir install --pre nexfort -f https://github.com/siliconflow/nexfort_releases/releases/expanded_assets/torch2.4.1_cu121")
os.system("git clone https://github.com/siliconflow/onediff.git")
os.system("cd onediff && python3 -m pip install .")
# sys.path.append("/home/user/app/onediff/src")
os.system("cd onediff/onediff_diffusers_extensions && python3 -m pip install .")
# sys.path.append("/home/user/app/onediff/onediff_diffusers_extensions/src")

os.system("pip show nexfort")
os.system("pip show onediff")
os.system("pip show onediffx")

from onediffx import compile_pipe, save_pipe

def nexfort_compile(torch_module: torch.nn.Module):
    options = json.loads('{"mode": "max-optimize:max-autotune:low-precision", "memory_format": "channels_last", "dynamic": true}')
    return compile_pipe(torch_module, backend="nexfort", options=options, fuse_qkv_projections=True)

BASE_MODEL = "stabilityai/sdxl-turbo"
device = "cuda"

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", 
    torch_dtype=torch.float16,
)
base_pipe = AutoPipelineForText2Image.from_pretrained(
    BASE_MODEL, 
    vae=vae,
    torch_dtype=torch.float16, 
    variant="fp16", 
    use_safetensors=True,
)
base_pipe.to(device)

# base_pipe = nexfort_compile(base_pipe)

from gfpgan.utils import GFPGANer
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer

if not os.path.exists('GFPGANv1.4.pth'):
    runcmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('realesr-general-x4v3.pth'):
    runcmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")

model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)

def create_demo() -> gr.Blocks:

    @spaces.GPU(duration=30)
    def text_to_image(
        prompt:str,
        steps:int,
    ):
        global compiled_pipe
        compiled_pipe = base_pipe
        run_task_time = 0
        time_cost_str = ''
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        if id(compiled_pipe) == id(base_pipe):
            print("---------->Recompile<----------")
            compiled_pipe = nexfort_compile(base_pipe)
        generated_image = compiled_pipe(
            prompt=prompt,
            num_inference_steps=steps,
        ).images[0]
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        return generated_image, time_cost_str

    def get_time_cost(run_task_time, time_cost_str):
        now_time = int(time.time()*1000)
        if run_task_time == 0:
            time_cost_str = 'start'
        else:
            if time_cost_str != '': 
                time_cost_str += f'-->'
            time_cost_str += f'{now_time - run_task_time}'
        run_task_time = now_time
        return run_task_time, time_cost_str

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", placeholder="Write a prompt here", lines=2, value="A beautiful sunset over the city")
            with gr.Column():
                steps = gr.Slider(minimum=1, maximum=100, value=5, step=1, label="Num Steps")
                g_btn = gr.Button("Generate")
                
        with gr.Row():
            with gr.Column():
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
            with gr.Column():
                time_cost = gr.Textbox(label="Time Cost", lines=1, interactive=False)
        
        g_btn.click(
            fn=text_to_image,
            inputs=[prompt, steps],
            outputs=[generated_image, time_cost],
        )

    return demo