|
import spaces |
|
import gradio as gr |
|
import time |
|
import torch |
|
|
|
from diffusers import ( |
|
DDPMScheduler, |
|
AutoPipelineForText2Image, |
|
AutoencoderTiny, |
|
) |
|
|
|
import oneflow as flow |
|
from onediff.infer_compiler import oneflow_compile |
|
|
|
BASE_MODEL = "stabilityai/sdxl-turbo" |
|
device = "cuda" |
|
|
|
vae = AutoencoderTiny.from_pretrained( |
|
'madebyollin/taesdxl', |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
).to('cuda') |
|
base_pipe = AutoPipelineForText2Image.from_pretrained( |
|
BASE_MODEL, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
use_safetensors=True, |
|
) |
|
base_pipe.to(device) |
|
|
|
base_pipe = base_pipe.to(device, silence_dtype_warnings=True) |
|
base_pipe.scheduler = DDPMScheduler.from_pretrained( |
|
BASE_MODEL, |
|
subfolder="scheduler", |
|
) |
|
base_pipe.unet = oneflow_compile(base_pipe.unet) |
|
|
|
|
|
def create_demo() -> gr.Blocks: |
|
|
|
@spaces.GPU(duration=10) |
|
def text_to_image( |
|
prompt:str, |
|
steps:int, |
|
): |
|
run_task_time = 0 |
|
time_cost_str = '' |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
generated_image = base_pipe( |
|
prompt=prompt, |
|
num_inference_steps=steps, |
|
).images[0] |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
return generated_image |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt", placeholder="Write a prompt here", lines=2, value="A beautiful sunset over the city") |
|
with gr.Column(): |
|
steps = gr.Slider(label="Inference Steps", min=1, max=30, step=1, value=5) |
|
g_btn = gr.Button("Generate") |
|
|
|
with gr.Row(): |
|
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) |
|
|
|
g_btn.click( |
|
fn=text_to_image, |
|
inputs=[prompt, steps], |
|
outputs=[generated_image], |
|
) |
|
|
|
return demo |