Update app.py
Browse files
app.py
CHANGED
@@ -12,13 +12,15 @@ def main():
|
|
12 |
st.write("Drag and drop an image file here.")
|
13 |
|
14 |
# Allow the user to upload an image file
|
15 |
-
|
16 |
|
17 |
if uploaded_file is not None:
|
18 |
# Display the uploaded image
|
19 |
image = Image.open(uploaded_file)
|
20 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
21 |
|
|
|
|
|
22 |
# Model 1.
|
23 |
# Model 1 gets input from the user.
|
24 |
# User -> Model 1
|
@@ -62,3 +64,98 @@ gpt2_pipeline = pipeline(task="text-generation", model="gpt2")
|
|
62 |
topic_model_1 = BERTopic.load(path="davanstrien/chat_topics")
|
63 |
topic_model_2 = BERTopic.load(path="MaartenGr/BERTopic_ArXiv")
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
st.write("Drag and drop an image file here.")
|
13 |
|
14 |
# Allow the user to upload an image file
|
15 |
+
image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
16 |
|
17 |
if uploaded_file is not None:
|
18 |
# Display the uploaded image
|
19 |
image = Image.open(uploaded_file)
|
20 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
21 |
|
22 |
+
question = st.text_input("What's your question?")
|
23 |
+
|
24 |
# Model 1.
|
25 |
# Model 1 gets input from the user.
|
26 |
# User -> Model 1
|
|
|
64 |
topic_model_1 = BERTopic.load(path="davanstrien/chat_topics")
|
65 |
topic_model_2 = BERTopic.load(path="MaartenGr/BERTopic_ArXiv")
|
66 |
|
67 |
+
###############################################################################
|
68 |
+
|
69 |
+
# 5 MODEL INFERENCES.
|
70 |
+
# User Input = Image + Question About The Image.
|
71 |
+
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4 -> Model 5
|
72 |
+
|
73 |
+
# Model 1.
|
74 |
+
|
75 |
+
vqa_pipeline_output = vqa_pipeline(image, question, top_k=5)[0]
|
76 |
+
|
77 |
+
# Model 2.
|
78 |
+
|
79 |
+
text = (
|
80 |
+
"I love "
|
81 |
+
+ str(vqa_pipeline_output["answer"])
|
82 |
+
+ " and I would like to know how to [MASK]."
|
83 |
+
)
|
84 |
+
bbu_pipeline_output = bbu_pipeline(text)
|
85 |
+
|
86 |
+
# Model 3.
|
87 |
+
|
88 |
+
utterance = bbu_pipeline_output[0]["sequence"]
|
89 |
+
inputs = tokenizer(utterance, return_tensors="pt")
|
90 |
+
result = facebook_model.generate(**inputs)
|
91 |
+
facebook_model_output = tokenizer.decode(result[0])
|
92 |
+
|
93 |
+
# Model 4.
|
94 |
+
|
95 |
+
facebook_model_output = facebook_model_output.replace("<s> ", "")
|
96 |
+
facebook_model_output = facebook_model_output.replace("<s>", "")
|
97 |
+
facebook_model_output = facebook_model_output.replace("</s>", "")
|
98 |
+
gpt2_pipeline_output = gpt2_pipeline(facebook_model_output)[0]["generated_text"]
|
99 |
+
|
100 |
+
# Model 5.
|
101 |
+
|
102 |
+
topic, prob = topic_model_1.transform(gpt2_pipeline_output)
|
103 |
+
topic_model_1_output = topic_model_1.get_topic_info(topic[0])["Representation"][
|
104 |
+
0
|
105 |
+
]
|
106 |
+
|
107 |
+
topic, prob = topic_model_2.transform(gpt2_pipeline_output)
|
108 |
+
topic_model_2_output = topic_model_2.get_topic_info(topic[0])["Representation"][
|
109 |
+
0
|
110 |
+
]
|
111 |
+
###############################################################################
|
112 |
+
|
113 |
+
print()
|
114 |
+
|
115 |
+
print("-" * 150)
|
116 |
+
print("vqa_pipeline_output = ", vqa_pipeline_output)
|
117 |
+
print("bbu_pipeline_output =", bbu_pipeline_output)
|
118 |
+
print("facebook_model_output =", facebook_model_output)
|
119 |
+
print("gpt2_pipeline_output =", gpt2_pipeline_output)
|
120 |
+
print("topic_model_1_output =", topic_model_1_output)
|
121 |
+
print("topic_model_2_output =", topic_model_2_output)
|
122 |
+
|
123 |
+
print()
|
124 |
+
|
125 |
+
print("-" * 150)
|
126 |
+
print("SUMMARY")
|
127 |
+
print("-" * 7)
|
128 |
+
print("Your Image:", image)
|
129 |
+
print("Your Question:", question)
|
130 |
+
print("-" * 100)
|
131 |
+
print(
|
132 |
+
"1. Highest Predicted Answer For Your Question:",
|
133 |
+
vqa_pipeline_output["answer"],
|
134 |
+
"\n",
|
135 |
+
)
|
136 |
+
print(text)
|
137 |
+
print(
|
138 |
+
"2. Highest Predicted Sequence On [MASK] Based on 1.:",
|
139 |
+
bbu_pipeline_output[0]["sequence"],
|
140 |
+
"\n",
|
141 |
+
)
|
142 |
+
print(
|
143 |
+
"3. Conversation Based On Previous Answer Based on 2.:",
|
144 |
+
facebook_model_output,
|
145 |
+
"\n",
|
146 |
+
)
|
147 |
+
print(
|
148 |
+
"4. Text Generated Based On Previous Answer Based on 3.:",
|
149 |
+
gpt2_pipeline_output,
|
150 |
+
"\n",
|
151 |
+
)
|
152 |
+
print(
|
153 |
+
"5. Highest Predicted Topic Model_1 For Previous The Answer Based on 4.:",
|
154 |
+
topic_model_1_output,
|
155 |
+
"\n",
|
156 |
+
)
|
157 |
+
print(
|
158 |
+
"6. Highest Predicted Topic Model_2 For Previous The Answer Based on 4.:",
|
159 |
+
topic_model_2_output,
|
160 |
+
)
|
161 |
+
print("-" * 150)
|