|
import os |
|
import gradio as gr |
|
from PIL import Image, ImageDraw, ImageFont |
|
import io |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
MODEL_NAME = "HiDream-ai/HiDream-I1-Full" |
|
WATERMARK_TEXT = "SelamGPT" |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
TORCH_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32 |
|
|
|
|
|
|
|
pipe = None |
|
|
|
def load_model(): |
|
global pipe |
|
if pipe is None: |
|
pipe = DiffusionPipeline.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=TORCH_DTYPE |
|
).to(DEVICE) |
|
|
|
|
|
if DEVICE == "cuda": |
|
try: |
|
pipe.enable_xformers_memory_efficient_attention() |
|
except: |
|
print("Xformers not available, using default attention") |
|
pipe.enable_attention_slicing() |
|
|
|
return pipe |
|
|
|
|
|
def add_watermark(image): |
|
"""Add watermark with optimized PNG output""" |
|
try: |
|
draw = ImageDraw.Draw(image) |
|
|
|
font_size = 24 |
|
try: |
|
font = ImageFont.truetype("Roboto-Bold.ttf", font_size) |
|
except: |
|
font = ImageFont.load_default(font_size) |
|
|
|
text_width = draw.textlength(WATERMARK_TEXT, font=font) |
|
x = image.width - text_width - 10 |
|
y = image.height - 34 |
|
|
|
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128)) |
|
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255)) |
|
|
|
|
|
img_byte_arr = io.BytesIO() |
|
image.save(img_byte_arr, format='PNG', optimize=True, quality=85) |
|
img_byte_arr.seek(0) |
|
return Image.open(img_byte_arr) |
|
except Exception as e: |
|
print(f"Watermark error: {str(e)}") |
|
return image |
|
|
|
|
|
def generate_image(prompt): |
|
if not prompt.strip(): |
|
return None, "⚠️ Please enter a prompt" |
|
|
|
try: |
|
model = load_model() |
|
image = model( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5 |
|
).images[0] |
|
|
|
return add_watermark(image), "✔️ Generation successful" |
|
|
|
except torch.cuda.OutOfMemoryError: |
|
return None, "⚠️ Out of memory! Try a simpler prompt" |
|
except Exception as e: |
|
return None, f"⚠️ Error: {str(e)[:200]}" |
|
|
|
|
|
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo: |
|
gr.Markdown(""" |
|
# 🎨 SelamGPT Image Generator |
|
*Powered by HiDream-I1-Full (1024x1024 PNG output)* |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt_input = gr.Textbox( |
|
label="Describe your image", |
|
placeholder="A futuristic Ethiopian city with flying cars...", |
|
lines=3, |
|
max_lines=5 |
|
) |
|
with gr.Row(): |
|
generate_btn = gr.Button("Generate Image", variant="primary") |
|
clear_btn = gr.Button("Clear") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"], |
|
["Traditional Ethiopian coffee ceremony in zero gravity"], |
|
["Portrait of a Habesha queen with golden jewelry"] |
|
], |
|
inputs=prompt_input |
|
) |
|
|
|
with gr.Column(scale=2): |
|
output_image = gr.Image( |
|
label="Generated Image", |
|
type="pil", |
|
format="png", |
|
height=512 |
|
) |
|
status_output = gr.Textbox( |
|
label="Status", |
|
interactive=False |
|
) |
|
|
|
generate_btn.click( |
|
fn=generate_image, |
|
inputs=prompt_input, |
|
outputs=[output_image, status_output], |
|
queue=True |
|
) |
|
|
|
clear_btn.click( |
|
fn=lambda: [None, ""], |
|
outputs=[output_image, status_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=2) |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |