Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -34,6 +34,12 @@ from diffusers import (
|
|
34 |
|
35 |
|
36 |
device = gr.State("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
39 |
revision = None
|
@@ -43,39 +49,35 @@ weight_dtype = torch.bfloat16
|
|
43 |
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
44 |
torch_dtype=torch.float16,safety_checker = None,
|
45 |
requires_safety_checker = False).to(device.value)
|
46 |
-
noise_scheduler = pipe.scheduler
|
47 |
del pipe
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
49 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
50 |
)
|
51 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
52 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
53 |
)
|
54 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
55 |
-
unet = UNet2DConditionModel.from_pretrained(
|
56 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
57 |
)
|
58 |
|
59 |
-
unet.requires_grad_(False)
|
60 |
-
unet.to(device.value, dtype=weight_dtype)
|
61 |
-
vae.requires_grad_(False)
|
62 |
|
63 |
-
text_encoder.requires_grad_(False)
|
64 |
-
vae.requires_grad_(False)
|
65 |
-
vae.to(device.value, dtype=weight_dtype)
|
66 |
-
text_encoder.to(device.value, dtype=weight_dtype)
|
67 |
print("")
|
68 |
|
69 |
|
70 |
|
71 |
-
unet = gr.State(unet)
|
72 |
-
vae = gr.State(vae)
|
73 |
-
text_encoder = gr.State(text_encoder)
|
74 |
-
tokenizer = gr.State(tokenizer)
|
75 |
-
noise_scheduler = gr.State(noise_scheduler)
|
76 |
|
77 |
|
78 |
-
|
|
|
79 |
|
80 |
|
81 |
|
|
|
34 |
|
35 |
|
36 |
device = gr.State("cuda")
|
37 |
+
unet = gr.State()
|
38 |
+
vae = gr.State()
|
39 |
+
text_encoder = gr.State()
|
40 |
+
tokenizer = gr.State()
|
41 |
+
noise_scheduler = gr.State()
|
42 |
+
network = gr.State()
|
43 |
|
44 |
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
45 |
revision = None
|
|
|
49 |
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
50 |
torch_dtype=torch.float16,safety_checker = None,
|
51 |
requires_safety_checker = False).to(device.value)
|
52 |
+
noise_scheduler.value = pipe.scheduler
|
53 |
del pipe
|
54 |
+
tokenizer.value = AutoTokenizer.from_pretrained(
|
55 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
56 |
)
|
57 |
+
text_encoder.value = CLIPTextModel.from_pretrained(
|
58 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
59 |
)
|
60 |
+
vae.value = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
61 |
+
unet.value = UNet2DConditionModel.from_pretrained(
|
62 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
63 |
)
|
64 |
|
65 |
+
unet.value.requires_grad_(False)
|
66 |
+
unet.value.to(device.value, dtype=weight_dtype)
|
67 |
+
vae.value.requires_grad_(False)
|
68 |
|
69 |
+
text_encoder.value.requires_grad_(False)
|
70 |
+
vae.value.requires_grad_(False)
|
71 |
+
vae.value.to(device.value, dtype=weight_dtype)
|
72 |
+
text_encoder.value.to(device.value, dtype=weight_dtype)
|
73 |
print("")
|
74 |
|
75 |
|
76 |
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
+
|
80 |
+
|
81 |
|
82 |
|
83 |
|