shirwu's picture
update path
bfaa442
import os
import os.path as osp
import gzip
import pickle
import json
import torch
import pandas as pd
import numpy as np
from collections import Counter
from tqdm import tqdm
from huggingface_hub import hf_hub_download
import zipfile
from ogb.utils.url import download_url
from src.benchmarks.semistruct.knowledge_base import SemiStructureKB
from src.tools.process_text import clean_data, compact_text
from src.tools.node import df_row_to_dict, Node, register_node
from src.tools.io import save_files, load_files
PROCESSED_DATASET = {
"repo": "snap-stanford/stark",
"file": "skb/amazon/processed.zip",
}
class AmazonSemiStruct(SemiStructureKB):
REVIEW_CATEGORIES = set(['Amazon_Fashion','All_Beauty','Appliances',
'Arts_Crafts_and_Sewing','Automotive','Books',
'CDs_and_Vinyl','Cell_Phones_and_Accessories',
'Clothing_Shoes_and_Jewelry','Digital_Music',
'Electronics','Gift_Cards','Grocery_and_Gourmet_Food',
'Home_and_Kitchen','Industrial_and_Scientific', 'Kindle_Store',
'Luxury_Beauty','Magazine_Subscriptions', 'Movies_and_TV',
'Musical_Instruments', 'Office_Products','Patio_Lawn_and_Garden',
'Pet_Supplies','Prime_Pantry','Software','Sports_and_Outdoors',
'Tools_and_Home_Improvement','Toys_and_Games','Video_Games'])
# single answers
QA_CATEGORIES = set(['Appliances','Arts_Crafts_and_Sewing', 'Automotive',
'Baby','Beauty','Cell_Phones_and_Accessories',
'Clothing_Shoes_and_Jewelry','Electronics',
'Grocery_and_Gourmet_Food','Health_and_Personal_Care',
'Home_and_Kitchen','Musical_Instruments','Office_Products',
'Patio_Lawn_and_Garden','Pet_Supplies','Sports_and_Outdoors',
'Tools_and_Home_Improvement','Toys_and_Games','Video_Games'])
COMMON = set(['Appliances', 'Arts_Crafts_and_Sewing', 'Automotive',
'Cell_Phones_and_Accessories', 'Clothing_Shoes_and_Jewelry', 'Electronics',
'Grocery_and_Gourmet_Food', 'Home_and_Kitchen', 'Musical_Instruments',
'Office_Products', 'Patio_Lawn_and_Garden', 'Pet_Supplies', 'Sports_and_Outdoors',
'Tools_and_Home_Improvement', 'Toys_and_Games', 'Video_Games'])
sub_category = 'data/amazon/category_list.json'
SUB_CATEGORIES = set(json.load(open(sub_category, 'r')))
link_columns = ['also_buy', 'also_view']
review_columns = ['reviewerID', 'summary', 'style', 'reviewText', 'vote', 'overall', 'verified', 'reviewTime']
qa_columns = ['questionType', 'answerType', 'question', 'answer', 'answerTime']
meta_columns = ['asin', 'title', 'global_category', 'category', 'price', 'brand', 'feature',
'rank', 'details', 'description']
candidate_types = ['product']
node_attr_dict = {'product': ['title', 'dimensions', 'weight', 'description', 'features', 'reviews', 'Q&A'],
'brand': ['brand_name'],
'category': ['category_name'],
'color': ['color_name']}
def __init__(self,
root,
categories: list,
meta_link_types=['brand', 'category', 'color'],
max_entries=25,
download_processed=True,
**kwargs):
'''
Args:
root (str): root directory to store the data
categories (list): product categories
meta_link_types (list): a list which may contain entries in node info
that used to consruct meta links, e.g. ['category', 'brand']
will construct entity nodes of catrgory and brand which link
to corresponding nodes
max_entries (int): maximum number of review & qa entries to show in the description
indirected (bool): make the graph indirected
'''
self.root = root
self.max_entries = max_entries
self.raw_data_dir = osp.join(root, 'raw')
self.processed_data_dir = osp.join(root, 'processed')
os.makedirs(self.raw_data_dir, exist_ok=True)
os.makedirs(self.processed_data_dir, exist_ok=True)
# construct the graph based on link info in the raw data
cache_path = None if meta_link_types is None else \
osp.join(self.processed_data_dir, 'cache', '-'.join(meta_link_types))
if not osp.exists(osp.join(cache_path, 'node_info.pkl')) and download_processed:
print('Downloading processed data...')
processed_path = hf_hub_download(
PROCESSED_DATASET["repo"],
PROCESSED_DATASET["file"],
repo_type="dataset"
)
with zipfile.ZipFile(processed_path, 'r') as zip_ref:
zip_ref.extractall(self.root)
os.remove(processed_path)
print('Downloaded processed data!')
if not (cache_path is None) and osp.exists(cache_path):
print(f'Load cached graph with meta link types {meta_link_types}')
processed_data = load_files(cache_path)
else:
print(f'Start processing raw data...')
print(f'{meta_link_types=}')
processed_data = self._process_raw(categories)
if meta_link_types:
# customize the graph by adding meta links
processed_data = self.post_process(processed_data, meta_link_types=meta_link_types, cache_path=cache_path)
super(AmazonSemiStruct, self).__init__(**processed_data, **kwargs)
def __getitem__(self, idx):
idx = int(idx)
node_info = self.node_info[idx]
node = Node()
register_node(node, node_info)
return node
def get_chunk_info(self, idx, attribute):
if not hasattr(self[idx], attribute): return ''
node_attr = getattr(self[idx], attribute)
if 'feature' in attribute:
features = []
if len(node_attr):
for feature_idx, feature in enumerate(node_attr):
if feature == '': continue
if 'asin' in feature.lower(): continue
features.append(feature)
chunk = ' '.join(features)
elif 'review' in attribute:
chunk = ''
if len(node_attr):
scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",","")) for review in node_attr]
ranks = np.argsort(-np.array(scores))
for idx, review_idx in enumerate(ranks):
review = node_attr[review_idx]
chunk += 'The review \"' + str(review['summary']) + '\"'
chunk += 'states that \"' + str(review['reviewText']) + '\". '
if idx > self.max_entries: break
elif 'qa' in attribute:
chunk = ''
if len(node_attr):
for idx, question in enumerate(node_attr):
chunk += 'The question is \"' + str(question['question']) + '\", '
chunk += 'and the answer is \"' + str(question['answer']) + '\". '
if idx > self.max_entries:
break
elif 'description' in attribute and len(node_attr):
chunk = " ".join(node_attr)
else:
chunk = node_attr
return chunk
def get_doc_info(self, idx,
add_rel=True,
compact=False):
if self.node_type_dict[int(self.node_types[idx])] == 'brand':
return f'brand name: {self[idx].brand_name}'
if self.node_type_dict[int(self.node_types[idx])] == 'category':
return f'category name: {self[idx].category_name}'
if self.node_type_dict[int(self.node_types[idx])] == 'color':
return f'color name: {self[idx].color_name}'
node = self[idx]
doc = f'- product: {node.title}\n'
if hasattr(node, 'brand'):
doc += f'- brand: {node.brand}\n'
try:
dimensions, weight = node.details.dictionary.product_dimensions.split(' ; ')
doc += (f'- dimensions: {dimensions}\n'
f'- weight: {weight}\n')
except: pass
if len(node.description):
description = " ".join(node.description).strip(" ")
if len(description) > 0:
doc += f'- description: {description}\n'
feature_text = f'- features: \n'
if len(node.feature):
for feature_idx, feature in enumerate(node.feature):
if feature == '': continue
if 'asin' in feature.lower(): continue
feature_text += (f'#{feature_idx + 1}: {feature}\n')
else: feature_text = ''
if len(node.review):
review_text = f'- reviews: \n'
scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",","")) for review in node.review]
ranks = np.argsort(-np.array(scores))
for i, review_idx in enumerate(ranks):
review = node.review[review_idx]
review_text += (f'#{review_idx + 1}:\n'
f'summary: {review["summary"]}\n'
f'text: "{review["reviewText"]}"\n')
if i > self.max_entries: break
else: review_text = ''
if len(node.qa):
qa_text = f'- Q&A: \n'
for qa_idx, qa in enumerate(node.qa):
qa_text += (f'#{qa_idx + 1}:\n'
f'question: "{qa["question"]}"\n'
f'answer: "{qa["answer"]}"\n')
if qa_idx > self.max_entries: break
else: qa_text = ''
doc += feature_text + review_text + qa_text
if add_rel:
doc += self.get_rel_info(idx)
if compact:
doc = compact_text(doc)
return doc
def get_rel_info(self, idx, rel_types=None, n_rel=-1):
doc = ''
rel_types = self.rel_type_lst() if rel_types is None else rel_types
n_also_buy = self.get_neighbor_nodes(idx, 'also_buy')
n_also_view = self.get_neighbor_nodes(idx, 'also_view')
n_has_brand = self.get_neighbor_nodes(idx, 'has_brand')
str_also_buy = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_buy)]
str_also_view = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_view)]
if len(str_also_buy) == 0: str_also_buy = ''
if len(str_also_view) == 0: str_also_view = ''
str_has_brand = ''
if len(n_has_brand):
str_has_brand = f' brand: {self[n_has_brand[0]].brand_name}\n'
str_also_buy = ''.join(str_also_buy)
str_also_view = ''.join(str_also_view)
if len(str_also_buy):
doc += f' products also purchased: \n{str_also_buy}'
if len(str_also_view):
doc += f' products also viewed: \n{str_also_view}'
if len(n_has_brand):
doc += str_has_brand
if len(doc):
doc = '- relations:\n' + doc
return doc
def _process_raw(self, categories):
if 'all' in categories:
review_categories = self.REVIEW_CATEGORIES
qa_categories = self.QA_CATEGORIES
else:
qa_categories = review_categories = categories
assert len(set(categories) - self.COMMON) == 0, f'invalid categories exist'
if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
print(f'Load processed data from {self.processed_data_dir}')
loaded_files = load_files(self.processed_data_dir)
loaded_files.update(
{'node_types': torch.zeros(len(loaded_files['node_info'])),
'node_type_dict': {0: 'product'}})
return loaded_files
print(f'Check data downloading...')
for category in review_categories:
review_header = 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_v2'
if not os.path.exists(osp.join(self.raw_data_dir, f'{category}.json.gz')):
print(f'Downloading {category} data...')
download_url(f'{review_header}/categoryFiles/{category}.json.gz', self.raw_data_dir)
download_url(f'{review_header}/metaFiles2/meta_{category}.json.gz', self.raw_data_dir)
for category in qa_categories:
qa_header = 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon/qa'
if not os.path.exists(osp.join(self.raw_data_dir, f'qa_{category}.json.gz')):
print(f'Downloading {category} QA data...')
download_url(f'{qa_header}/qa_{category}.json.gz', self.raw_data_dir)
if not osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
ckt_path = 'data/amazon/intermediate'
print('Loading data... It might take a while')
# read amazon QA data
df_qa_path = os.path.join(ckt_path, 'df_qa.pkl')
if os.path.exists(df_qa_path):
df_qa = pd.read_pickle(df_qa_path)
else:
df_qa = pd.concat([read_qa(osp.join(self.raw_data_dir, f'qa_{category}.json.gz'))
for category in qa_categories])[['asin'] + self.qa_columns]
df_qa.to_pickle(df_qa_path)
print('df_qa loaded')
# read amazon review data
df_review_path = os.path.join(ckt_path, 'df_review.pkl')
if os.path.exists(df_review_path):
df_review = pd.read_pickle(df_review_path)
else:
df_review = pd.concat([read_review(osp.join(self.raw_data_dir, f'{category}.json.gz'))
for category in review_categories])[['asin'] + self.review_columns]
df_review.to_pickle(df_review_path)
print('df_review loaded')
# read amazon meta data from amazon review & amazon kdd
df_ucsd_meta_path = os.path.join(ckt_path, 'df_ucsd_meta.pkl')
if os.path.exists(df_ucsd_meta_path):
df_ucsd_meta = pd.read_pickle(df_ucsd_meta_path)
else:
meta_df_lst = []
for category in review_categories:
cat_review = read_review(osp.join(self.raw_data_dir, f'meta_{category}.json.gz'))
cat_review.insert(0, 'global_category', category.replace('_', ' '))
meta_df_lst.append(cat_review)
df_ucsd_meta = pd.concat(meta_df_lst)
df_ucsd_meta.to_pickle(df_ucsd_meta_path)
print('df_ucsd_meta loaded')
print('Preprocessing data...')
df_ucsd_meta = df_ucsd_meta.drop_duplicates(subset='asin', keep='first')
df_meta = df_ucsd_meta[self.meta_columns + self.link_columns]
# Merge dataframes
df_review_meta = df_review.merge(df_meta, left_on='asin', right_on='asin')
unique_asin = np.unique(np.array(df_review_meta['asin']))
# Filer items with both meta and review data
df_qa_reduced = df_qa[df_qa['asin'].isin(unique_asin)]
df_review_reduced = df_review[df_review['asin'].isin(unique_asin)]
df_meta_reduced = df_meta[df_meta['asin'].isin(unique_asin)].reset_index()
def get_map(df):
asin2id, id2asin = {}, {}
for idx in range(len(df)):
asin2id[df['asin'][idx]] = idx
id2asin[idx] = df['asin'][idx]
return asin2id, id2asin
print('Construct node info and graph...')
# get mapping from asin to node id and its reversed mapping
self.asin2id, self.id2asin = get_map(df_meta_reduced)
node_info = self.construct_raw_node_info(df_meta_reduced, df_review_reduced, df_qa_reduced)
edge_index, edge_types = self.create_raw_product_graph(df_meta_reduced,
columns=self.link_columns)
edge_type_dict = {0: 'also_buy', 1: 'also_view'}
processed_data = {
'node_info': node_info,
'edge_index': edge_index,
'edge_types': edge_types,
'edge_type_dict': edge_type_dict}
print(f'Saving to {self.processed_data_dir}...')
save_files(save_path=self.processed_data_dir, **processed_data)
processed_data.update({'node_types': torch.zeros(len(processed_data['node_info'])),
'node_type_dict': {0: 'product'}})
return processed_data
def post_process(self, raw_info, meta_link_types, cache_path=None):
print(f'Adding meta link types {meta_link_types}')
node_info = raw_info['node_info']
edge_type_dict = raw_info['edge_type_dict']
node_type_dict = raw_info['node_type_dict']
node_types = raw_info['node_types'].tolist()
edge_index = raw_info['edge_index'].tolist()
edge_types = raw_info['edge_types'].tolist()
n_e_types, n_n_types = len(edge_type_dict), len(node_type_dict)
for i, link_type in enumerate(meta_link_types):
if link_type == 'brand':
values = np.array([node_info_i[link_type] for node_info_i in node_info.values() if link_type in node_info_i.keys()])
indices = np.array([idx for idx, node_info_i in enumerate(node_info.values()) if link_type in node_info_i.keys()])
elif link_type in ['category', 'color']:
value_list = []
indice_list = []
for idx, node_info_i in enumerate(node_info.values()):
if link_type in node_info_i.keys():
value_list.extend(node_info_i[link_type])
indice_list.extend([idx for _ in range(len(node_info_i[link_type]))])
values = np.array(value_list)
indices = np.array(indice_list)
else:
raise Exception(f'Invalid meta link type {link_type}')
cur_n_nodes = len(node_info)
node_type_dict[n_n_types + i] = link_type
edge_type_dict[n_e_types + i] = "has_" + link_type
unique = np.unique(values)
for j, unique_j in tqdm(enumerate(unique)):
node_info[cur_n_nodes + j] = {link_type + '_name': unique_j}
ids = indices[np.array(values == unique_j)]
edge_index[0].extend(list(ids))
edge_index[1].extend([cur_n_nodes + j for _ in range(len(ids))])
edge_types.extend([i + n_e_types for _ in range(len(ids))])
node_types.extend([n_n_types + i for _ in range(len(unique))])
print(f'finished adding {link_type}')
edge_index = torch.LongTensor(edge_index)
edge_types = torch.LongTensor(edge_types)
node_types = torch.LongTensor(node_types)
files = {'node_info': node_info,
'edge_index': edge_index,
'edge_types': edge_types,
'edge_type_dict': edge_type_dict,
'node_type_dict': node_type_dict,
'node_types': node_types
}
if cache_path is not None:
save_files(cache_path, **files)
return files
def _process_brand(self, brand):
brand = brand.strip(" \".*+,-_!@#$%^&*();\/|<>\'\t\n\r\\")
if len(brand) > 3 and brand[:3] == 'by ':
brand = brand[3:]
if len(brand) > 4 and brand[-4:] == '.com':
brand = brand[:-4]
if len(brand) > 4 and brand[:4] == 'www.':
brand = brand[4:]
if len(brand) > 100:
brand = brand.split(' ')[0]
return brand
def construct_raw_node_info(self, df_meta, df_review, df_qa):
node_info = {}
for idx, asin in self.id2asin.items():
node_info[idx] = {}
node_info[idx]['review'] = []
node_info[idx]['qa'] = []
###################### Assign color ########################
def assign_colors(df_review, lower_limit=20):
# asign to color
df_review = df_review[['asin', 'style']]
df_review = df_review.dropna(subset=['style'])
raw_color_dict = {}
for idx, row in tqdm(df_review.iterrows()):
asin, style = row['asin'], row['style']
for key in style.keys():
if 'color' in key.lower():
try:
raw_color_dict[asin]
except:
raw_color_dict[asin] = []
raw_color_dict[asin].append(
style[key].strip().lower() if isinstance(style[key], str) else style[key][0].strip())
all_color_values = []
for asin in raw_color_dict.keys():
raw_color_dict[asin] = list(set(raw_color_dict[asin]))
all_color_values.extend(raw_color_dict[asin])
print('number of all colors', len(all_color_values))
color_counter = Counter(all_color_values)
print('number of unique colors', len(color_counter))
color_counter = {k: v for k, v in sorted(color_counter.items(), key=lambda item: item[1], reverse=True)}
selected_colors = []
for color, number in color_counter.items():
if number > lower_limit and len(color) > 2 and len(color.split(' ')) < 5 and color.isnumeric() is False:
selected_colors.append(color)
print('number of selected colors', len(selected_colors))
filtered_color_dict = {}
total_color_connections = 0
for asin in raw_color_dict.keys():
filtered_color_dict[asin] = []
for value in raw_color_dict[asin]:
if value in selected_colors:
filtered_color_dict[asin].append(value)
total_color_connections += len(filtered_color_dict[asin])
print('number of linked products', len(filtered_color_dict))
print('number of total connections', total_color_connections)
return filtered_color_dict
filtered_color_dict_path = os.path.join('data/amazon/intermediate',
'filtered_color_dict.pkl')
if os.path.exists(filtered_color_dict_path):
with open(filtered_color_dict_path, 'rb') as f:
filtered_color_dict = pickle.load(f)
else:
filtered_color_dict = assign_colors(df_review)
with open(filtered_color_dict_path, 'wb') as f:
pickle.dump(filtered_color_dict, f)
for i in tqdm(range(len(df_meta))):
df_meta_i = df_meta.iloc[i]
asin = df_meta_i['asin']
idx = self.asin2id[asin]
try:
color = filtered_color_dict[asin]
if len(color):
node_info[idx]['color'] = color
except: pass
print('loaded color')
####################################################################
for i in tqdm(range(len(df_meta))):
df_meta_i = df_meta.iloc[i]
asin = df_meta_i['asin']
idx = self.asin2id[asin]
for column in self.meta_columns:
if column == 'brand':
brand = self._process_brand(clean_data(df_meta_i[column]))
if len(brand) > 1:
node_info[idx]['brand'] = brand
elif column == 'category':
category_list = []
for category in df_meta_i[column]:
category = category.lower()
if category in self.SUB_CATEGORIES:
category_list.append(category)
if len(category_list) > 0:
node_info[idx]['category'] = category_list
else:
node_info[idx][column] = clean_data(df_meta_i[column])
review_columns = self.review_columns
review_columns.remove('style')
for name, df in zip(['review', 'qa'], [df_review, df_qa]):
for i in tqdm(range(len(df))):
df_i = df.iloc[i]
asin = df_i['asin']
idx = self.asin2id[asin]
node_info[idx][name].append(
df_row_to_dict(df_i, colunm_names=self.review_columns \
if name == 'review' else self.qa_columns))
import pdb; pdb.set_trace()
return node_info
def create_raw_product_graph(self, df, columns):
edge_types = []
edge_index = [[], []]
for idx in range(len(df)):
out_node = self.asin2id[df['asin'].iloc[idx]]
for edge_type_id, edge_type in enumerate(columns):
in_nodes = []
if not isinstance(df[edge_type].iloc[idx], list):
continue
for i in df[edge_type].iloc[idx]:
try:
in_nodes.append(self.asin2id[i])
except KeyError:
continue
edge_types.extend([edge_type_id for _ in range(len(in_nodes))])
edge_index[0].extend([out_node for _ in range(len(in_nodes))])
edge_index[1].extend(in_nodes)
return torch.LongTensor(edge_index), torch.LongTensor(edge_types)
def has_brand(self, idx, brand):
try:
b = self[idx].brand
if len(b) > 4 and b[-4:] == '.com': b = b[:-4]
if len(brand) > 4 and brand[-4:] == '.com': brand = brand[:-4]
return b.lower().strip("\"") == brand.lower().strip("\"")
except:
return False
def has_also_buy(self, idx, also_buy_item):
try:
also_buy_lst = self.get_neighbor_nodes(idx, 'also_buy')
return also_buy_item in also_buy_lst
except:
return False
def has_also_view(self, idx, also_view_item):
try:
also_buy_lst = self.get_neighbor_nodes(idx, 'also_view')
return also_view_item in also_buy_lst
except:
return False
# read review files
def read_review(path):
def parse(path):
g = gzip.open(path, 'rb')
for l in g:
yield json.loads(l)
def getDF(path):
i = 0
df = {}
for d in parse(path):
df[i] = d
i += 1
return pd.DataFrame.from_dict(df, orient='index')
return getDF(path)
# read qa files
def read_qa(path):
def parse(path):
g = gzip.open(path, 'rb')
for l in g:
yield eval(l)
def getDF(path):
i = 0
df = {}
for d in parse(path):
df[i] = d
i += 1
return pd.DataFrame.from_dict(df, orient='index')
return getDF(path)